High Dimensional Multiclass Classification Using Sparse Group Lasso


[Up] [Top]

Documentation for package ‘msgl’ version 2.3.0

Help Pages

best_model.msgl Index of best model
coef.msgl Extract nonzero coefficients
Err.msgl Compute error rates
features.msgl Nonzero features
features_stat.msgl Extract feature statistics
models.msgl Extract the fitted models
msgl Fit a multinomial sparse group lasso regularization path.
msgl.algorithm.config Create a new algorithm configuration
msgl.cv Multinomial sparse group lasso cross validation
msgl.lambda.seq Computes a lambda sequence for the regularization path
msgl.standard.config Standard msgl algorithm configuration
msgl.subsampling Multinomial sparse group lasso generic subsampling procedure
nmod.msgl Returns the number of models in a msgl object
parameters.msgl Nonzero parameters
parameters_stat.msgl Extracting parameter statistics
predict.msgl Predict
print.msgl Print function for msgl
sim.data Simulated data set