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1 Multivariate normal model for continuous variables

We simulated multivariate normal datasets with 2000 observations of three predictor variables (x1,x2,x3),
one dependent variable (y) and an auxiliary variable (x4) which was associated with the other variables
but was not part of the analysis of interest. The x variables had the variance-covariance matrix:

1 0.2 0.1 −0.7
0.2 1 0.3 0.1
0.1 0.3 1 0.2
−0.7 0.1 0.2 1


The data generating model for y was:

y = x1 + x2 + x3 + e where e ∼ N(0,1)

The analysis of interest was y = β0 +β1x1 +β2x2 +β3x3 where the true value of β0 was 0 and the
true value of the other β coefficients was 1.

Some values of variables x1 and x2 were made missing according to the following mechanisms:

1. Missing Completely at Random (MCAR), where a missingness indicator was generated for
each value of x1 and x2 as a random draw from a Bernoulli distribution with probability 0.2.

2. Missing at Random (MAR), in which missingness was dependent on the outcome (y) and x3,
both of which were fully observed. The probability that x1 was missing was the logistic of
x3 + y+ c, where c was a constant chosen such that the overall proportion of x1 missing was
0.2. Missingness was independently introduced into x2 using the same model and with the same
probability as for x1.

MICE (Multivariate Imputation by Chained Equations) (1) was used to impute missing values of x1
and x2, with x3, y and the auxiliary variable x4 in the imputation model. Imputations were drawn after
10 iterations, and 10 imputed datasets were created. Coefficients of the linear regression of y on x1,
x2, and x3 were estimated for each imputed dataset and the estimates combined using Rubin’s rules.
We compared MICE with normal-based Bayesian linear regression to MICE with the following novel
Random Forest-based imputation functions:

1. Fit a Random Forest with 1 tree to the predictors in the imputation model and the observed val-
ues of variable to be imputed. The tree is fitted to a bootstrap sample of the data (sampling with
replacement, with the sample size equal to the total number of observations). The observations
not included in the bootstrap sample (‘out-of-bag’ observations) are used to estimate the mean
square prediction error (2). Each missing value is imputed as a random draw from a normal
distribution with the mean defined by the prediction of the tree and variance estimated by the
out of bag mean square error.

2. Fit a Random Forest with 10 or 100 trees to a bootstrap sample of the data. Impute each missing
value as a random draw from a normal distribution with the mean defined by the prediction of
the Random Forest and variance estimated by the out of bag mean square error.

3. Fit a Random Forest as above, but apply the experimental bias correction (‘biascorr’) option
in Random Forest before drawing imputed values. This attempts to correct for the bias in
Random Forest predictions; predictions for extreme values are on average based on values of
the outcome variable closer to the center of the data and are biased away from the extremes
(3). Hence predictions for high values are underestimates and predictions for low values are
overestimates. The bias correction option uses the Random Forest to predict the outcome values
(ẑ) and replaces the original z values with the predictions from a linear regression of z on ẑ.
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Table 1: Analysis of simulated multivariate normal datasets with predictor variables Missing Com-
pletely at Random (MCAR) using MICE and normal-based linear regression or Random
Forest imputation methods

Imputation
Method

Coeffic-
ient

Number
of Trees

Estimate: Bias of Estimate: 95% Confidence Interval:
Mean SD Mean 95% CI Length Coverage, %

Full data β1 N/A 1.001 0.023 0 -0.001, 0.001 0.090 94.7
Full data β2 1.000 0.024 -0.001 -0.002, 0.000 0.094 94.9

MICE
normal

β1 N/A 1.001 0.026 0 -0.001, 0.001 0.101 95.0

MICE
normal

β2 1.000 0.026 -0.001 -0.002, 0.000 0.104 95.5

MICE RF β1 1 0.893 0.025 -0.107 -0.108, -0.106 0.142 8.9
MICE RF β2 1 0.809 0.026 -0.192 -0.193, -0.191 0.173 0.1

MICE RF β1 10 1.001 0.026 0.000 -0.001, 0.001 0.107 96.2
MICE RF β2 10 0.985 0.026 -0.016 -0.017, -0.014 0.113 93.9

MICE RF
biascorr

β1 10 1.003 0.026 0.003 0.002, 0.004 0.107 96.4

MICE RF
biascorr

β2 10 0.986 0.026 -0.015 -0.016, -0.014 0.114 94.3

MICE RF β1 100 1.018 0.026 0.017 0.016, 0.018 0.101 88.3
MICE RF β2 100 1.017 0.026 0.017 0.015, 0.018 0.107 90.8

MICE RF
biascorr

β1 100 1.008 0.026 0.007 0.006, 0.008 0.100 93.7

MICE RF
biascorr

β2 100 1.016 0.026 0.016 0.015, 0.017 0.104 91.0

MICE RF
choose

β1 10 0.985 0.026 -0.016 -0.017, -0.015 0.111 93.8

MICE RF
choose

β2 10 0.966 0.025 -0.034 -0.035, -0.033 0.119 84.5

4. Fit 10 Random Forests each with 1 tree to a bootstrap sample of the data. Choose a tree at
random for each missing value, and impute the value as the prediction of the randomly chosen
tree. This method is denoted ‘choose’, and does not use the normal distribution at all. It is also
possible to use it for categorical variables.

We simulated and analysed 2000 datasets using these methods. We saved the random seeds to enable
the analysis to be repeated if necessary. The estimates of β1 and β2 were compared between methods,
assuming that the empirical mean from the full data analyses was the ‘correct’ result.

Results

As expected, the full data analyses and parametric MICE produced unbiased parameter estimates with
correct coverage of confidence intervals, both under MCAR (Table 1) and MAR (Table 2). All the
Random Forest methods produced biased parameter estimates, but the bias was less than 2% with 10
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Table 2: Analysis of simulated multivariate normal datasets with predictor variables Missing at Ran-
dom (MAR) using MICE and normal-based linear regression or Random Forest imputation
methods

Imputation
Method

Coeffic-
ient

Number
of Trees

Estimate: Bias of Estimate: 95% Confidence Interval:
Mean SD Mean 95% CI Length Coverage, %

Full data β1 N/A 1.001 0.023 0.000 -0.001, 0.001 0.090 94.7
Full data β2 1.000 0.024 -0.001 -0.002, 0.000 0.094 94.9

MICE
normal

β1 N/A 1.000 0.026 0.000 -0.001, 0.001 0.102 94.8

MICE
normal

β2 0.999 0.026 -0.002 -0.003, 0.000 0.105 95.8

MICE RF β1 1 0.888 0.029 -0.112 -0.114, -0.111 0.202 38.4
MICE RF β2 1 0.783 0.031 -0.218 -0.219, -0.216 0.253 1.3

MICE RF β1 10 1.016 0.029 0.016 0.014, 0.017 0.131 94.9
MICE RF β2 10 0.972 0.029 -0.028 -0.03, -0.027 0.140 92.1

MICE RF
biascorr

β1 10 1.021 0.029 0.020 0.019, 0.021 0.131 93.1

MICE RF
biascorr

β2 10 0.971 0.030 -0.030 -0.031, -0.029 0.142 92.3

MICE RF β1 100 1.037 0.029 0.036 0.035, 0.038 0.117 77.4
MICE RF β2 100 1.007 0.03 0.006 0.005, 0.008 0.125 96.2

MICE RF
biascorr

β1 100 1.025 0.029 0.024 0.023, 0.025 0.117 86.8

MICE RF
biascorr

β2 100 1.01 0.029 0.009 0.008, 0.011 0.121 95.3

MICE RF
choose

β1 10 0.986 0.029 -0.015 -0.016, -0.013 0.142 97.3

MICE RF
choose

β2 10 0.938 0.029 -0.062 -0.064, -0.061 0.156 70.4
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or 100 trees under MCAR, or with 10 trees under MAR. With 10 trees, coverage of nominal 95%
confidence intervals was around 92–94% for both β1 and β2 under MAR, and 94–96% under MCAR.
Under MCAR and MAR, Random Forest with 1 tree produced estimates which were biased towards
the null, with very wide confidence intervals but low coverage. The performance of Random Forest
with 100 trees was poor for β1 (x1 was strongly negatively correlated with the completely observed
auxiliary variable, x4) but good for β2 (x2 was poorly correlated with other variables). The bias
correction option in Random Forest did not consistently reduce the bias or improve the coverage of
confidence intervals. Random Forest with 100 trees produced narrower confidence intervals than with
10 trees but coverage was worse.

With the ‘choose’ method (choosing an imputed value from 10 single trees), estimates for β1 were
satisfactory but estimates of β2 were biased towards the null, with coverage of 95% confidence inter-
vals only 85% (under MCAR) or 70% (under MAR).

2 Mixed linear and binary variables

We simulated datasets as in section 1, but replaced the values of x2 by random draws from a Bernoulli
distribution with probability equal to the logistic of x2. We made x1 and x2 partially missing according
to the same missing at random mechanism as in section 1.

We analysed this dataset using MICE with linear and logistic regression, or MICE with the ‘choose’
Random Forest method (choosing a prediction of a random tree) for x2, the binary variable, and the
same methods as in section 1 for x1.

Results

The full data analyses and parametric MICE produced unbiased parameter estimates with correct
coverage of confidence intervals, both under MCAR (Table 3) and MAR (Table 4). Imputation of
the binary variable x2 by Random Forest resulted in estimates β2 with 3–5% bias under MCAR and
3–9% bias under MAR, and coverage of 95% confidence intervals was around 90%. Random Forest
with 10 trees performed moderately well in estimating β1 and β2, with 3–6% bias of estimates and
89–90% coverage of 95% confidence intervals under MAR. Random Forest with 100 trees performed
better in estimating β1 but worse on β2.

3 Discussion

Parametric MICE had better performance than any of the Random Forest methods used on the simu-
lated data. This is unsurprising as the data were drawn from a normal distribution and the parametric
model is completely correct. Random Forest does not assume that linear relations hold, and this un-
certainty is manifest in the form of less efficient parameter estimates and wider confidence intervals.

Increasing the number of trees in a Random Forest prediction model should increase the precision of
estimates (4). We found that confidence intervals were narrower when using 100 trees for imputation,
some the parameter estimates were frequently biased, and the results were worse than Random Forest
with 10 trees. A possible reason for this might be that the prediction bias of Random Forest is not
improved by increasing the number of trees, as shown in figure 1. Predictions for extreme values are
on average based on values of the outcome variable closer to the center of the data and are biased
away from the extremes (3), and increasing the number of trees does not reduce this bias but does
reduce the out of bag mean square error. In our MAR model, higher values of x1 and x2 had a greater
probability of being missing, because missingness depended on the outcome y and both x1 and x2
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Table 3: Analysis of simulated datasets with continuous and binary predictor variables Missing Com-
pletely at Random (MCAR) using MICE and parametric or Random Forest imputation
methods

Imputation
Method

Coeffic-
ient

Number
of Trees

Estimate: Bias of Estimate: 95% Confidence Interval:
Mean SD Mean 95% CI Length Coverage, %

Full data β1 N/A 1.000 0.024 0.000 -0.001, 0.001 0.088 94.2
Full data β2 0.999 0.046 0.000 -0.002, 0.002 0.177 95.0

MICE
normal

β1 N/A 0.999 0.026 0.000 -0.001, 0.001 0.096 93.6

MICE
logistic

β2 0.999 0.052 0.000 -0.003, 0.002 0.202 94.6

MICE RF β1 1 0.893 0.026 -0.107 -0.108, -0.106 0.174 23.6
MICE RF
choose

β2 1 0.977 0.052 -0.022 -0.025, -0.020 0.230 95.7

MICE RF β1 10 0.982 0.026 -0.018 -0.019, -0.017 0.113 92
MICE RF
choose

β2 10 0.964 0.051 -0.036 -0.038, -0.034 0.216 91.7

MICE RF
biascorr

β1 10 0.982 0.025 -0.018 -0.019, -0.017 0.108 91.1

MICE RF
choose

β2 10 0.957 0.051 -0.043 -0.045, -0.040 0.214 88.7

MICE RF β1 100 1.002 0.026 0.002 0.001, 0.003 0.104 95.4
MICE RF
choose

β2 100 0.96 0.051 -0.039 -0.042, -0.037 0.212 89.5

MICE RF
biascorr

β1 100 1.003 0.025 0.003 0.002, 0.004 0.098 94.3

MICE RF
choose

β2 100 0.947 0.051 -0.053 -0.055, -0.051 0.207 82.8

MICE RF
choose

β1 10 1.015 0.026 0.015 0.014, 0.016 0.105 92.7

MICE RF
choose

β2 10 0.959 0.051 -0.041 -0.043, -0.039 0.21 88.9
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Table 4: Analysis of simulated datasets with continuous and binary predictor variables Missing at
Random (MAR) using MICE and parametric or Random Forest imputation methods

Imputation
Method

Coeffic-
ient

Number
of Trees

Estimate: Bias of Estimate: 95% Confidence Interval:
Mean SD Mean 95% CI Length Coverage, %

Full data β1 N/A 1.000 0.024 0.000 -0.001, 0.001 0.088 94.2
Full data β2 0.999 0.046 0.000 -0.002, 0.002 0.177 95.0

MICE
normal

β1 N/A 1.000 0.025 0.000 -0.001, 0.001 0.096 94

MICE
logistic

β2 0.999 0.051 -0.001 -0.003, 0.002 0.203 95.4

MICE RF β1 1 0.872 0.028 -0.127 -0.128, -0.126 0.219 29.8
MICE RF
choose

β2 1 0.948 0.060 -0.051 -0.054, -0.049 0.320 94.7

MICE RF β1 10 0.970 0.027 -0.030 -0.031, -0.028 0.130 89.2
MICE RF
choose

β2 10 0.939 0.058 -0.061 -0.063, -0.058 0.276 90.3

MICE RF
biascorr

β1 10 0.975 0.027 -0.025 -0.026, -0.024 0.123 90.2

MICE RF
choose

β2 10 0.931 0.057 -0.069 -0.071, -0.066 0.272 86.7

MICE RF β1 100 0.991 0.027 -0.009 -0.01, -0.007 0.115 95.6
MICE RF
choose

β2 100 0.938 0.058 -0.062 -0.064, -0.059 0.268 88.1

MICE RF
biascorr

β1 100 1.002 0.027 0.002 0.001, 0.003 0.108 95.6

MICE RF
choose

β2 100 0.918 0.056 -0.081 -0.084, -0.079 0.256 79.6

MICE RF
choose

β1 10 0.988 0.027 -0.012 -0.013, -0.011 0.123 95.8

MICE RF
choose

β2 10 0.941 0.058 -0.059 -0.062, -0.057 0.272 89.4
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were positively correlated with y. This means that the imputation models tended to contain lower
values of x1 and x2 than the missing values they were trying to predict, and in Random Forest this
may have introduced bias. Web Figure 1 shows that imputed values using Random Forest were biased
downwards for large values of x1, compared to values imputed by MICE with linear regression.

Figure 1: Comparison of true versus mean imputed values for linear regression and Random Forest
imputation functions, based on 1000 imputations of a single partially observed dataset.

It is probable that Random Forest with 10 trees was less biased than 100 trees in this simulation
because the extra variance in the forest accommodated the prediction bias. However, using a single
tree was also worse than 10 trees. Parameter estimates were biased towards the null with 1 tree,
probably because the mean was predicted with a large degree of error, and confidence intervals were
wide because of the variability in the imputations.

In this simulation study we used data which conformed perfectly to a specific parametric distri-
bution. However, in real datasets such as electronic health record datasets used in epidemiological
studies, values of patient measurements are frequently not normally distributed and may have interac-
tions and non-linear associations. Such datasets have a large number of potential explanatory variables
which can be used in imputation models, so it would be worth testing Random Forest imputation in
such datasets.
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