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Abstract

The detection of regions with unusually high risk plays an important role in disease
mapping and the analysis of public health data. In particular, the detection of groups
of areas (i.e., clusters) where the risk is significantly high is often conducted by Public
Health authorities.

Many methods have been proposed for the detection of these disease clusters, most
of them based on moving windows, such as Kulldorff’s Spatial Scan Statistics. Here we
describe a model-based approach for the detection of disease clusters implemented in the
DClusterm package. Our model-based approach is based on representing a large number
of possible clusters by dummy variables and then fitting many generalized linear models
to the data where these covariates are included one at a time. Cluster detection is done by
performing a variable or model selection among all fitted models using different criteria.

Because of our model-based approach, cluster detection can be performed using differ-
ent types of likelihoods and latent effects. We cover the detection of spatial and spatio-
temporal clusters, as well as how to account for covariates, zero-inflated datasets and
overdispersion in the data.

Keywords: disease cluster, spatial statistics, R.

1. Introduction

The analysis of epidemiological data at small area level often involves accounting for possible
risk factors and other important covariates using different types of regression models. How-
ever, it is not uncommon that after a number of covariates have been accounted for, residuals
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still show a spatial distribution that defines some groups of areas with unusual high epidemi-
ological risk. Hence, in many occasions it is not clear whether all spatial risk factors have
been included in our model.

Public health data are often aggregated over small administrative areas due to issues of
confidentiality. However, individual data are often available as well, and Generalized Linear
Models (GLM, McCullagh and Nelder 1989) are a common framework used in disease mapping
for modeling aggregated and individual-level information. GLMs not only model Poisson or
Binomial responses, but they can also link the outcome to a linear predictor on the covariates
(and, possibly, other effects). However, until recently, it was not clear how to use GLMs to
detect clusters of disease, a group of contiguous areas with significant high risk.

In order to detect disease clusters, the most widely used method is probably the Spatial Scan
Statistic (SSS) proposed by Kulldorff (1997). Given a possible cluster z, the SSS will compare
the relative risk in the cluster θz to the relative risk outside the cluster θz using the following
test:

H0 : θz = θz
H1 : θz > θz

(1)

This test is performed via the use of a likelihood ratio statistic, where many different possible
clusters are tested in turn by changing the areas in z and the most likely cluster (i.e., the one
with the highest value of the test statistic) is selected. Significance of this cluster is assessed
with a Monte Carlo test that also provides the p-value.

In this paper we describe a novel approach to disease cluster detection that provides a link
between GLMs and SSS. We have implemented this approach via the free and open source
DClusterm package for the R statistical software (R Core Team 2016). This approach involves
fitting many different GLMs for which dummy variables that represent possible clusters are
included one at a time. Cluster detection is based on selecting a number of dummy cluster
variables using variable selection methods.

This paper is organized as follows. Section 2 will introduce the link between GLM and SSS.
Next, in Section 3 we show how to include random effects in the detection of disease clusters
to account for over-dispersion. The detection of disease clusters for zero-inflated data is
discussed in Section 4. Section 5 describes how to extend these ideas to detect clusters in
space and time. Finally, a discussion and some final remarks are provided in Section 6.

2. Generalized linear models for cluster detection

2.1. General description

An explicit link between GLM’s and the SSS is provided by Jung (2009); Zhang and Lin
(2009) who show that the test statistic for a given cluster is equivalent to fitting a GLM using
a cluster variable as predictor. This cluster variable is a dummy variable which is 1 for the
areas in the cluster and 0 for the areas outside the cluster. By including cluster covariates
in the model we obtain an estimate of the increased risk (as measured by its associated
coefficient) and its significance (by means of the associated p-value, for example).

We demonstrate our aproach by first considering a Poisson model with expected counts Ei
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and observed cases Oi modeled as:

Oi ∼ Po(Eiθi)

log(µi) = log(Ei) + α+ βxi

Here log(Ei) denotes an offset to account for the population “exposure” (age, gender, etc.)
and θi is the relative risk and it measures any deviation (increase or decrease) in the incidence
of the disease from the expected number of cases. Finally, xi represents a covariate associated
with the outcome of interest.

After fitting this model, we obtain estimates α̂ and β̂ which account for the effects of non-
cluster covariates in the model. We include the cluster covariates as follows:

log(µi) = log(Ei) + α̂+ β̂xi + γjc
(j)
i

The overall intercept is now log(Ei) + α̂+ β̂xi and c
(j)
i denotes a dummy variable associated

with cluster j, with j denoting an index over the list of all possible clusters being tested,
defined as

c
(j)
i =

{
1 if area i belongs to cluster j
0 otherwise

Here, γj is a measure of the risk within cluster j. We are only interested in clusters whose
coefficient is significantly higher than 0 (i.e., increased risk). Hence those with a significant
negative coefficient will be ignored. We use model selection techniques to select the most
important cluster in the study region. As such, the log-likelihood can be used to compare the
model with the cluster variables to the null model (i.e., the one with no cluster covariates at
all).

It is possible to perform cluster detection without considering non-cluster based covariates in
the model. Here, cluster detection accounting for the non-cluster based covariates will likely
provide a different number of clusters than models fit without these variables. By comparing
the clusters detected in both models (with and without non-cluster based covariates), we will
be able to find which clusters are linked to underlying risk factors included in the model and
which clusters remain unexplained by these other variables. In the examples that we include
in this paper, we will consider both scenarios to better understand how cluster detection
works.

Similar approaches to detection of disease clusters have been proposed by Bilancia and De-
marinis (2014); Gómez-Rubio, Moraga, and Molitor (2015) who describe a similar approach
to the detection of disease clusters using Bayesian hierarchical models. The Integrated Nested
Laplace Approximation (INLA) is used in both cases for model fitting as it provides computa-
tional benefits over other computationally expensive methods, such as Markov Chain Monte
Carlo.

2.2. Leukemia in upstate New York

We first consider an example where we model counts of leukemia cases in upstate New York.
These data are provided in the NY8 dataset, available in package DClusterm. It provides cases
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of leukemia in different census tracts in upstate New York. This data set has been analyzed
by several authors (Waller, Turnbull, Clark, and Nasca 1992; Waller and Gotway 2004). The
location of leukemia is thought to be linked to the use of Trichloroethene (TCE) by several
companies in the area. Figure 1 shows the Standardized Mortality Ratios of the census tracts
and the locations of the industries using TCE.

In order to measure exposure, the inverse of the distance to the nearest TCE site has been
used (variable PEXPOSURE in the dataset). In addition, two other socioeconomic covariates
have been used: the percentage of people aged 65 or more (variable PCTAGE65P) and the
percentage of people who own their home (variable PCTOWNHOME).

Hence, our first action is to load some required packages (Ryan and Ulrich 2014) and the
dataset itself.

R> library("DClusterm")

R> library("xts")

R> data("NY8")

A number of cases could not be linked to their actual location and they were distributed
uniformly over the study area, making the counts real numbers instead of integers. We have
rounded these values as we intend to use a Poisson likelihood for the analysis. Furthermore,
expected counts are computed using the overall incidence ratio (i.e., total number of cases
divided by the total population). Age-sex standardization is not possible in this case as this
information is not available in our dataset.

R> NY8$Observed <- round(NY8$Cases)

R> NY8$Expected <- NY8$POP8 * sum(NY8$Observed) / sum(NY8$POP8)

R> NY8$SMR <- NY8$Observed / NY8$Expected

The centres of the areas will be stored in columns named x and y. This will be used later
when ordering the areas by increasing distance to the putative cluster centre. If the location
of the main populated cities are available these could be used but here we will use function
coordinates() instead:

R> NY8$x <- coordinates(NY8)[, 1]

R> NY8$y <- coordinates(NY8)[, 2]

As DClusterm is designed to detect clusters in space and time, it will always expect data to
be from one of the classes in package spacetime (Pebesma 2012) to store all the data, even if
they are available for a single period of time. In this case, a STFDF object is created to store
all the data but note that in this case we do not have a truly space-time dataset. Hence, the
time series in the data is made of a single date entry ("1972-01-01") and that it is just a
convenient way of having our data in a STFDF object.

R> NY8st <- STFDF(as(NY8, "SpatialPolygons"), xts(1, as.Date("1972-01-01")),

+ NY8@data, endTime = as.POSIXct(strptime(c("1972-01-01"), "%Y-%m-%d"),

+ tz = "GMT"))
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Figure 1: Standardised Mortality Ratios and covariates of the incidence of Leukemia in up-
state New York dataset. PEXPOSURE is the inverse of the distance to the nearest TCE
site, PCTAGE65P is the percentage people aged 65 or more, and PCTOWNHOME is the
percentage of people who own their home. The red crosses in the top-left map mark the
locations of the TCE sites.

2.3. Cluster detection

Cluster detection with no covariates

First of all, a model with no covariates will be fitted and used as a baseline, so that other
models can be compared to this one (for example, using the AIC or the log–likelihood) to
assess whether they provide a better fit.

R> ny.m0 <- glm(Observed ~ offset(log(Expected)) + 1, family = "poisson",

+ data = NY8)

Function DetectClustersModel() will take this baseline model (using argument model0),
create the cluster dummy variables and test them in turn. Then, those clusters with a highest
significance will be reported.
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Argument thegrid will take a 2-column data.frame (with names x and y) with the centres
of possible clusters. If the grid of cluster centres is not defined, then a rectangular grid is used
with a distance between adjacent points defined by argument step. Dummy cluster variables
are created around these points by adding areas to the cluster until a certain percentage of
the population (defined by argument fractpop), with the column to be used to compute the
population at risk in the cluster defined by parameter ClusterSizeContribution, or until
a certain distance about the centre (defined by argument radius) has been reached. When
testing for significant cluster variables, argument alpha defines the significance level.

DetectClustersModel() can detect spatial and spatio-temporal clusters, which is why its
first argument is a space-time object. The type of clusters that are investigated is defined by
argument typeCluster. In the example we have used typeCluster = "S".

Other options include the number of replicates for Monte Carlo tests (argument R) if cluster
assessment is done by simulation. By default, Monte Carlo tests are not used. DClusterm
allows for parallel computing using several cores as implemented in package parallel. The
number of cores to use is defined in option mc.cores (now 4 cores are used):

R> options(mc.cores = 1)

In the following example, to reduce the computational burden, we have only looked for clusters
around 5 areas (whose rows in NY8 are defined in variable idxcl). In a real application we
advise the use of all locations (area centroids or actual locations of individual data).

R> idxcl <- c(120, 12, 89, 139, 146)

R> ny.cl0 <- DetectClustersModel(NY8st,

+ thegrid = as.data.frame(NY8)[idxcl, c("x", "y")],

+ fractpop = 0.15, alpha = 0.05, radius = Inf, step = NULL,

+ typeCluster = "S", R = NULL, model0 = ny.m0,

+ ClusterSizeContribution = "POP8")

Below is a summary of the clusters detected. Dates can be ignored as this is a purely spatial
cluster analysis. In the case of spatio-temporal clusters, dates shown define the temporal
range of the cluster. Values x and y defined the cluster centre, size is the number of areas in
the cluster, statistic is the value of the test statistic and risk represents the point estimate
of the associated cluster coefficient. Also, note that only clusters with a lower pvalue than
argument alpha are returned. cluster indicates whether the cluster is a significant one.
Finally, note how detected clusters are ordered by increasing value of pvalue, so that the
most significant clusters are reported first.

R> ny.cl0

x y size minDateCluster maxDateCluster

11 424728.9 4661404 39 1972-01-01 01:00:00 1972-01-01 01:00:00

88 409430.4 4720092 9 1972-01-01 01:00:00 1972-01-01 01:00:00

119 404710.7 4768346 24 1972-01-01 01:00:00 1972-01-01 01:00:00

statistic pvalue risk cluster

11 8.044846 0.0000604120 0.3916904 TRUE

88 6.967107 0.0001893208 0.6455613 TRUE

119 3.254824 0.0107290781 0.4445236 TRUE
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Function get.knclusters() can be used to extract the indices of the areas in the dif-
ferent clusters detected. In the next lines, we show how to write a new function called
get.allknclusters() to obtain all the clusters detected together in a single variable:

R> get.allknclusters <- function (spdf, knresults) {

+ clusters <- rep("", nrow(spdf))

+

+ knclusters <- get.knclusters(spdf, knresults)

+ if(length(knclusters) >0 ) {

+ clusters[unique(unlist(knclusters))] <- "CLUSTER"

+ clusters <- as.factor(clusters)

+ }

+

+ return(clusters)

+ }

R> NY8$CLUSTER0 <- get.allknclusters(NY8, ny.cl0)

The areas and centers of the clusters detected are shown in Figure 2. Because of the lack
of adjustment for covariates these clusters show regions of high risk based on the raw data
(observed and expected counts) alone.

Cluster detection after adjusting for covariates

Similarly, clusters can be detected after adjusting for significant risk factors. First of all, we
will fit a Poisson regression with the 3 covariates mentioned earlier. As it can be seen, all
three are significant:

R> ny.m1 <- glm(Observed ~ offset(log(Expected)) + PCTOWNHOME + PCTAGE65P +

+ PEXPOSURE, family = "poisson", data = NY8)

R> summary(ny.m1)

Call:

glm(formula = Observed ~ offset(log(Expected)) + PCTOWNHOME +

PCTAGE65P + PEXPOSURE, family = "poisson", data = NY8)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9099 -1.1294 -0.1768 0.6385 3.2426

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.65507 0.18550 -3.531 0.000413 ***

PCTOWNHOME -0.36472 0.19316 -1.888 0.058998 .

PCTAGE65P 4.05031 0.60559 6.688 2.26e-11 ***

PEXPOSURE 0.15141 0.03165 4.784 1.72e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 459.05 on 280 degrees of freedom

Residual deviance: 384.01 on 277 degrees of freedom

AIC: 958.97

Number of Fisher Scoring iterations: 5

As the three covariates are significant, the expected number of cases will be different now and
the detected clusters may be different in this case. Cluster detection is performed as in the
previous example, but now we use the model that adjusts for covariates instead:

R> ny.cl1 <- DetectClustersModel(NY8st,

+ thegrid = as.data.frame(NY8)[idxcl, c("x", "y")],

+ fractpop = 0.15, alpha = 0.05,

+ typeCluster = "S", R = NULL, model0 = ny.m1,

+ ClusterSizeContribution = "POP8")

R> ny.cl1

x y size minDateCluster maxDateCluster

88 409430.4 4720092 9 1972-01-01 01:00:00 1972-01-01 01:00:00

119 404710.7 4768346 20 1972-01-01 01:00:00 1972-01-01 01:00:00

statistic pvalue risk cluster

88 5.861204 0.0006175202 0.5869176 TRUE

119 3.160591 0.0119304026 0.4882633 TRUE

Similarly as in the previous example, we can use function get.allkncluster() to get the
indices of the areas in the clusters and add a new variable to the SpatialPolygonsDataFrame:

R> NY8$CLUSTER1 <- get.allknclusters(NY8, ny.cl1)

Figure 2 shows the clusters detected after adjusting for covariates. Compared to the example
with no covariate adjustment, one cluster has disappeared. Hence, that cluster has been
explained by the effect of the covariates. Another cluster is a bit smaller in size, which means
that covariates only explain a small part of it. The most significant cluster remains the same.
In all cases, cluster significance has been reduced by the effect of the covariates.

3. Mixed-effects models for cluster detection

Random effects can be incorporated into our models to account for unmeasured risk factors.
Cluster detection will be performed as usual, but we should keep in mind that by including
random effects and dummy cluster covariates there may be a clash between the two. By using
dummy variables we are intentionally looking for unexplained spatial variation in the data.
Hence, random effects should aim at modelling a different structure in the data.
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Figure 2: Clusters detected with no covariate adjustment (left) and after adjusting for covari-
ates (right). Areas in clusters are shaded in gray and cluster centres are represented by blue
dots.

Random effects are particularly useful to model over-dispersion in count data. For the Poisson
case, this will mean that the relative risk can be modelled as:

log(µi) = log(Ei) + α+ βxi + γjc
(j)
i + ui (2)

ui ∼ N(0, σ2u) (3)

where ui represents a random effect normally distributed with zero mean and variance σ2u.
Note that random effects can be defined to be spatially correlated, as suggested by Bilancia
and Demarinis (2014). However, this can produce a clash between the dummy cluster variables
and the random effects.

3.1. Leukemia in upstate New York

We go back to the example on the leukemia incidence in upstate New York to show how
models can include random effects and, at the same time, detect disease clusters. In this
particular example, random effects will be important in order to reflect any over-dispersion
present in the data. For this reason, our first step here is to test the data for over-dispersion
using Dean’s PB and P ′

B score tests (see, Dean 1992, for details). These two tests have
been implemented in functions DeanB() and DeanB2() in the DCluster (Lopez-Qúılez 2005)
package. They both take a glm object and perform the score tests:

R> DeanB(ny.m0)

Dean's P_B test for overdispersion

data: ny.m0

P_B = 5.5755, p-value = 1.234e-08

alternative hypothesis: greater
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R> DeanB2(ny.m0)

Dean's P'_B test for overdispersion

data: ny.m0

P'_B = 5.6233, p-value = 9.368e-09

alternative hypothesis: greater

From the results, it is clear that when no covariates are included data are clearly over-
dispersed. Hence, a Poisson distribution will not be appropriate to model the observed counts
in each tract.

The same tests applied to the model with covariates produce a similar result:

R> DeanB(ny.m1)

Dean's P_B test for overdispersion

data: ny.m1

P_B = 2.0145, p-value = 0.02198

alternative hypothesis: greater

R> DeanB2(ny.m1)

Dean's P'_B test for overdispersion

data: ny.m1

P'_B = 2.2391, p-value = 0.01257

alternative hypothesis: greater

Although p-values have increased, they are both small and we may still consider that data
are over-dispersed. Hence, we will aim at detecting clusters using a Poisson regression with
independent random effects to account for census tract-level heterogeneity.

3.2. Cluster detection

Cluster detection with no covariates

The baseline model with no covariate will now be fitted with function glmer() from package
lme4 (Bates, Mächler, Bolker, and Walker 2015). This function is similar to glm() for GLMs
but it will allow us to include random effects in the model as part of the formula argument.

R> library("lme4")

R> ny.mm0 <- glmer(Observed ~ offset(log(Expected)) + (1 | AREANAME),

+ data = as(NY8, "data.frame"), family = "poisson")

R> summary(ny.mm0)
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Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: poisson ( log )

Formula: Observed ~ offset(log(Expected)) + (1 | AREANAME)

Data: as(NY8, "data.frame")

AIC BIC logLik deviance df.resid

1010.8 1018.1 -503.4 1006.8 279

Scaled residuals:

Min 1Q Median 3Q Max

-2.1185 -0.8799 -0.2617 0.7784 5.0263

Random effects:

Groups Name Variance Std.Dev.

AREANAME (Intercept) 0.2111 0.4594

Number of obs: 281, groups: AREANAME, 64

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2410 0.1051 -2.293 0.0219 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> ny.clmm0 <- DetectClustersModel(NY8st,

+ thegrid = as.data.frame(NY8)[idxcl, c("x", "y")], fractpop = 0.15,

+ alpha = 0.05, typeCluster = "S", R = NULL, model0 = ny.mm0,

+ ClusterSizeContribution = "POP8")

R> ny.clmm0

x y size minDateCluster maxDateCluster

88 409430.4 4720092 9 1972-01-01 01:00:00 1972-01-01 01:00:00

119 404710.7 4768346 24 1972-01-01 01:00:00 1972-01-01 01:00:00

statistic pvalue risk cluster

88 7.577766 9.900781e-05 0.7880056 TRUE

119 2.415960 2.793750e-02 0.7862091 TRUE

After accounting for overdispersion, the number of clusters detected is 2. These are shown in
Figure 3. The largest cluster detected before has now disappeared and only the two smallest
clusters remain. This may be due to the fact that the first cluster has the smallest SMR
and risk. Hence, allowing for extra-variation will make the discrepancy between observed and
expected less extreme and this cluster will be the first one to be declared as non-significant.
The two remaining clusters have the same size and a very similar risk than in the previous
case.

Cluster detection with covariates
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R> ny.mm1 <- glmer(Observed ~ offset(log(Expected)) + PCTOWNHOME +

+ PCTAGE65P + PEXPOSURE + (1 | AREANAME),

+ data = as(NY8, "data.frame"), family = "poisson")

R> summary(ny.mm1)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: poisson ( log )

Formula:

Observed ~ offset(log(Expected)) + PCTOWNHOME + PCTAGE65P + PEXPOSURE +

(1 | AREANAME)

Data: as(NY8, "data.frame")

AIC BIC logLik deviance df.resid

959.8 978.0 -474.9 949.8 276

Scaled residuals:

Min 1Q Median 3Q Max

-2.1451 -0.8697 -0.1932 0.6963 4.0848

Random effects:

Groups Name Variance Std.Dev.

AREANAME (Intercept) 0.01532 0.1238

Number of obs: 281, groups: AREANAME, 64

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.73898 0.21947 -3.367 0.00076 ***

PCTOWNHOME -0.38390 0.21622 -1.776 0.07582 .

PCTAGE65P 4.04222 0.62575 6.460 1.05e-10 ***

PEXPOSURE 0.16159 0.03662 4.413 1.02e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) PCTOWN PCTAGE

PCTOWNHOME -0.734

PCTAGE65P -0.465 0.145

PEXPOSURE -0.567 0.211 -0.023

R> ny.clmm1 <- DetectClustersModel(NY8st,

+ thegrid = as.data.frame(NY8)[idxcl, c("x", "y")], fractpop = 0.15,

+ alpha = 0.05, typeCluster = "S", R = NULL, model0 = ny.mm1,

+ ClusterSizeContribution = "POP8")

R> ny.clmm1
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x y size minDateCluster maxDateCluster

88 409430.4 4720092 1 1972-01-01 01:00:00 1972-01-01 01:00:00

statistic pvalue risk cluster

88 4.051264 0.004420356 0.03289885 TRUE

When overdispersion and covariates are included in the model, only one of the clusters remains
with size 1 and a slightly reduced estimate of the cluster coefficient. This should not come
as a surprise given that we have already seen how including covariates explains some of the
extra-variation and that by including random effects the significance of the clusters is also
reduced. A summary of the clusters detected can be found in Figure 3.

As in the example in Section 2.2, we have created two cluster variables to display the clusters
obtained:

R> NY8$CLUSTERMM0 <- get.allknclusters(NY8, ny.clmm0)

R> NY8$CLUSTERMM1 <- get.allknclusters(NY8, ny.clmm1)

●

●

●

Figure 3: Clusters detected with no covariate adjustment (left) and after adjusting for covari-
ates (right) using a mixed-effects model to account for overdispersion of the data. Areas in
clusters are shaded in gray and cluster centers are represented by blue dots.

4. Zero-inflated models for cluster detection

The analysis of rare diseases often involves datasets where there are many areas with zero
counts, leading to zero-inflated data. In this situation the Poisson or Binomial likelihoods may
not be suitable to fit a model and other distributions for the data should be used. Gómez-
Rubio and López-Qúılez (2010) discuss this issue and they have extended model-based cluster
detection methods to account for zero-inflation.

For count data, a zero-inflated Poisson model could be used. In this case, observed number
of cases come from a mixture distribution of a Poisson and a distribution with all mass at
zero. Probabilities are as follows:
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Pr(Oi = ni) =

{
πi + (1− πi)Po(0|θiEi) ni = 0
(1− πi)Po(ni|θiEi) ni = 1, 2, . . .

Here Po(Oi|θiEi) represents the probability of observing Oi cases using a Poisson distribution
with mean θiEi. πi represents the proportion of zeroes observed that do not come from the
Poisson distribution.

Relative risks θi can be modeled using a log-linear model to depend on some relevant risk
factors. Also, it is common that all πi’s are taken equal to a single value π.

4.1. Brain cancer in Navarre (Spain)

Ugarte, Ibáñez, and Militino (2006) analyze the incidence of brain cancer in Navarre (Spain)
at the health district level. Figure 4 shows the Standardized Mortality Ratios. As it can be
seen there are many areas where the SMR is zero because there are no cases in those areas.
Ugarte, Ibáñez, and Militino (2004) have also reported a significant zero-inflation of these
data compared to a Poisson distribution. For cluster detection, the method implemented
in DClusterm is similar to the one used in Gómez-Rubio and López-Qúılez (2010) for the
detection of disease clusters of rare diseases.

4.2. Cluster detection

Before starting our cluster detection methods, we will check the appropriateness of a Poisson
distribution for this data. Fitting a log-linear model (with no covariates) gives the following
model:

R> nav.m0 <- glm(OBSERVED ~ offset(log(EXPECTED)) + 1, family = "poisson",

+ data = brainnav)

R> summary(nav.m0)

Call:

glm(formula = OBSERVED ~ offset(log(EXPECTED)) + 1, family = "poisson",

data = brainnav)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5227 -1.4783 -0.3203 0.7042 1.6393

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.752e-06 8.805e-02 0 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 63.733 on 39 degrees of freedom

Residual deviance: 63.733 on 39 degrees of freedom

AIC: 145.02
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Figure 4: SMR of brain cancer in Navarre (Spain).

Number of Fisher Scoring iterations: 5

Furthermore, a quasipoisson model has been fitted in order to assess any extra-variation in
the data:

R> nav.m0q <- glm(OBSERVED ~ offset(log(EXPECTED)) + 1, data = brainnav,

+ family = "quasipoisson")

R> summary(nav.m0q)

Call:

glm(formula = OBSERVED ~ offset(log(EXPECTED)) + 1, family = "quasipoisson",

data = brainnav)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5227 -1.4783 -0.3203 0.7042 1.6393
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.752e-06 9.703e-02 0 1

(Dispersion parameter for quasipoisson family taken to be 1.214555)

Null deviance: 63.733 on 39 degrees of freedom

Residual deviance: 63.733 on 39 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

The dispersion parameter in the previous model seems to be higher than 1, which may mean
that the Poisson distribution is not appropriate.

For this reason, and following Ugarte et al. (2004), a zero-inflated Poisson model has been
fitted using function zeroinfl() from package pscl (Zeileis, Kleiber, and Jackman 2008).
Here is the resulting model:

R> library("pscl")

R> nav.m0zip <- zeroinfl(OBSERVED ~ offset(log(EXPECTED)) + 1 | 1,

+ data = brainnav, dist = "poisson", x = TRUE)

R> summary(nav.m0zip)

Call:

zeroinfl(formula = OBSERVED ~ offset(log(EXPECTED)) + 1 | 1,

data = brainnav, dist = "poisson", x = TRUE)

Pearson residuals:

Min 1Q Median 3Q Max

-1.3585 -0.9137 -0.1378 0.7137 1.8091

Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.09347 0.09459 0.988 0.323

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6158 0.6435 -2.511 0.012 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 9

Log-likelihood: -69.08 on 2 Df

Hence, the zero-inflated Poisson model will be used now to detect clusters of disease. As in the
example on the New York leukemia dataset, a spacetime object will store all the information.
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The column for the expected counts must be named Expected, and this is our first step. Note
also that, because only one time period is considered, data will have a single value and it is
the 1st of January of 1990.

R> brainnav$Expected <- brainnav$EXPECTED

R> brainnavst <- STFDF(as(brainnav, "SpatialPolygons"),

+ xts(1,as.Date("1990-01-01")), as(brainnav, "data.frame"),

+ endTime = as.POSIXct(strptime(c("1990-01-01"), "%Y-%m-%d"), tz = "GMT"))

Function DetectClustersModel() will perform the cluster detection using a zeroinfl model.
This provides a very flexible way of handling different types of models in R for cluster detection.

R> nav.cl0 <- DetectClustersModel(brainnavst, coordinates(brainnav),

+ fractpop = 0.25, alpha = 0.05, typeCluster = "S", R = NULL,

+ model0 = nav.m0zip, ClusterSizeContribution = "EXPECTED")

The output will show the following clusters:

R> nav.cl0

x y size minDateCluster maxDateCluster

31 596886.8 4710520 4 1990-01-01 01:00:00 1990-01-01 01:00:00

30 611795.5 4713762 3 1990-01-01 01:00:00 1990-01-01 01:00:00

statistic pvalue risk cluster

31 2.520092 0.02476587 0.5987255 TRUE

30 2.016942 0.04459518 0.6139100 TRUE

As it can be seen, two clusters (with a p-value lower than 0.05) are detected. However, they
overlap and we will just consider the one with the lowest p-value, which is shown in Figure 5.

An index for the areas in each of the detected cluster can be obtained with function knbinary().
This function will return a data.frame with all the dummy cluster variables, i.e., the returned
data.frame will have as many columns as clusters and a number of rows equal to the number
of areas. Entries will be 1 if the corresponding areas are in a cluster and 0 otherwise. These
indices can be used for a number of analyses, such as checking whether two clusters overlap
or computing the number of times an area is included in a cluster. In the following example
we obtain the representation of all the clusters detected and the first one, the most signifi-
cant, is added as a new column to the original SpatialPolygonsDataFrame to be displayed
in Figure 5.

R> nav.clusters <- get.knclusters(brainnav, nav.cl0)

R> brainnav$CLUSTER <- ""

R> brainnav$CLUSTER [ nav.clusters[[1]] ] <- "CLUSTER"

R> brainnav$CLUSTER <- as.factor(brainnav$CLUSTER)

5. Spatio-temporal clusters
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CLUSTER

Figure 5: Cluster of brain cancer detected in Navarre (Spain).

Jung (2009) discusses how to extend model-based approaches for the detection of spatial
disease clusters to space and time. Gómez-Rubio et al. (2015) propose the following model:

log(µi,t) = log(Ei,t) + γjc
(j)
i,t (4)

where µi,t is the mean of area i at time t and c
(j)
i,t a cluster dummy variable for spatio-temporal

cluster j. Random effects can also be included in equation (4) as described in Section 3 and
zero-inflated distributions can also be considered as in Section 4.

Note how now data are indexed according to space and time. Dummy cluster variables are
defined as in the spatial case, by considering areas in the cluster according to their distance
to the cluster center, for data within a particular time period. When defining a temporal
cluster, areas are aggregated using all possible temporal windows up to a predefined temporal
range.

5.1. Brain cancer in New Mexico

The brainNM dataset (included in DClusterm) contains yearly cases of brain cancer in New
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Mexico from 1973 to 1991 (inclusive) in a spacetime object. The data set has been taken from
the SaTScan website and the area boundaries from the U.S. Census Bureau. In addition, the
location of Los Alamos National Laboratory (LANL) has been included (from Wikipedia).
Inverse distance to this site can be used to test for increased risk in the areas around the
Laboratory as no other covariates are available.

R> data("brainNM")

Expected counts have been obtained using age and sex standardization over the whole period
of time. Hence, yearly differences are likely to be seen when plotting the data. Standardized
Mortality Ratios have been plotted in Figure 6.

SMR

1973−03−20 1974−03−20 1975−03−20 1976−03−20 1977−03−20

1978−03−20 1979−03−20 1980−03−20 1981−03−20 1982−03−20

1983−03−20 1984−03−20 1985−03−20 1986−03−20 1987−03−20

1988−03−20 1989−03−20 1990−03−20 1991−03−20

0

1

2

3

4

5

6

7

8

Figure 6: Standardized Mortality Ratios of brain cancer in New Mexico.

5.2. Cluster detection

Cluster detection with no covariates

Similarly as in the purely spatial case, a Poisson model with no covariates will be fitted first:
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R> nm.m0 <- glm(Observed ~ offset(log(Expected)) + 1, family = "poisson",

+ data = brainst)

R> summary(nm.m0)

Call:

glm(formula = Observed ~ offset(log(Expected)) + 1, family = "poisson",

data = brainst)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4874 -0.9998 -0.4339 0.3773 3.1321

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.834e-16 2.917e-02 0 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 631.64 on 607 degrees of freedom

Residual deviance: 631.64 on 607 degrees of freedom

AIC: 1585.6

Number of Fisher Scoring iterations: 5

Before proceeding to disease cluster detection, we have extracted the centroids of the counties
in New Mexico by using function coordinates() from the sp slot in the STIDF object that
stores the data.

R> NM.coords <- coordinates(brainst@sp)

Cluster detection with function DetectClustersModel() takes arguments minDateUser and
maxDateUser to define the minimum and maximum times that are considered when looking
for clusters. In this example the time period has been constrained to 1985–1989. Furthermore,
typeCluster = "ST" is used to look for spatio-temporal clusters.

R> nm.cl0 <- DetectClustersModel(brainst, NM.coords,

+ minDateUser = "1985-01-01", maxDateUser = "1989-01-01",

+ fractpop = 0.15, alpha = 0.05, typeCluster = "ST", R = NULL,

+ model0 = nm.m0, ClusterSizeContribution = "Expected")

180 possible clusters have been found this time. However, note that most of them overlap
and may be different configurations of the same cluster. The first 5 are summarized below:

R> nm.cl0[1:5,]

x y size minDateCluster maxDateCluster

0286 -106.3073 35.86930 3 1986-03-20 01:00:00 1988-03-20 01:00:00
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0496 -105.9761 35.50684 2 1986-03-20 01:00:00 1988-03-20 01:00:00

0531 -106.9303 34.00725 9 1985-03-20 01:00:00 1986-03-20 01:00:00

0498 -105.9761 35.50684 2 1987-03-20 01:00:00 1988-03-20 01:00:00

0288 -106.3073 35.86930 2 1987-03-20 01:00:00 1988-03-20 01:00:00

statistic pvalue risk cluster

0286 7.493492 0.0001082553 0.6814588 TRUE

0496 6.438221 0.0003327442 0.6970405 TRUE

0531 6.378992 0.0003544929 0.3838756 TRUE

0498 6.331113 0.0003731179 0.8070901 TRUE

0288 6.331113 0.0003731179 0.8070901 TRUE

Cluster detection after adjusting for covariates

In this case, we will use the inverse of the distance to LANL as a covariate as no other informa-
tion about the areas is available. Distances have been computed using function spDistsN1()

from package sp (Pebesma 2005). Given that coordinates are expressed in longitude and
latitude great circle distances are used.

R> dst <- spDistsN1(pts = NM.coords, pt = losalamos, longlat = TRUE)

Distances need to be put together in a way that values are available for all time periods. In
this case, given that distances do not change over time, a vector is created by repeating the
vector of distances as many times as time slots (years) we have in the dataset.

R> nyears <- length(unique(brainst$Year))

R> brainst$IDLANL <- rep(1 / dst, nyears)

With all these data we are now able to fit a baseline model.

R> nm.m1 <- glm(Observed ~ offset(log(Expected)) + IDLANL,

+ family = "poisson", data = brainst)

R> summary(nm.m1)

Call:

glm(formula = Observed ~ offset(log(Expected)) + IDLANL, family = "poisson",

data = brainst)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4832 -0.9982 -0.4280 0.3775 3.1424

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.005721 0.029897 -0.191 0.848

IDLANL 0.338467 0.365200 0.927 0.354
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 631.64 on 607 degrees of freedom

Residual deviance: 630.84 on 606 degrees of freedom

AIC: 1586.8

Number of Fisher Scoring iterations: 5

Note how now the included covariate is not significant. For illustrative purposes, we will still
keep the covariate in our model for the cluster detection. However, non-significant covariates
will have a tiny impact on the clusters detected as they will not produce a change in the
expected number of cases.

R> nm.cl1 <- DetectClustersModel(brainst, NM.coords, fractpop = 0.15,

+ alpha = 0.05, minDateUser = "1985-01-01", maxDateUser = "1989-01-01",

+ typeCluster = "ST", R = NULL, model0 = nm.m1,

+ ClusterSizeContribution = "Expected")

The number of clusters detected in this case is 179, very similar to the 180 found when no
covariates where included in the model. This was expected as the included covariate was not
significant. By inspecting the five most significant clusters we can observe that they are very
similar to the ones detected before:

R> nm.cl1[1:5,]

x y size minDateCluster maxDateCluster

0286 -106.3073 35.86930 3 1986-03-20 01:00:00 1988-03-20 01:00:00

0531 -106.9303 34.00725 9 1985-03-20 01:00:00 1986-03-20 01:00:00

0533 -106.9303 34.00725 10 1985-03-20 01:00:00 1988-03-20 01:00:00

0498 -105.9761 35.50684 2 1987-03-20 01:00:00 1988-03-20 01:00:00

0288 -106.3073 35.86930 2 1987-03-20 01:00:00 1988-03-20 01:00:00

statistic pvalue risk cluster

0286 6.857035 0.0002128539 0.6487021 TRUE

0531 6.468803 0.0003220466 0.3867416 TRUE

0533 6.127874 0.0004638274 0.2581940 TRUE

0498 5.789493 0.0006670128 0.7673277 TRUE

0288 5.789493 0.0006670128 0.7673277 TRUE

Note how these clusters only cover a few areas, but over several years.

In order to exploit the output from DetectClustersModel(), function get.stclusters()

will take the data and this output to return a list with the indices of the areas in the clusters.
The next example shows how to add a new variable to brainst with the space-time regions
in the most significant cluster, which is displayed in Figure 7.

R> stcl <- get.stclusters(brainst, nm.cl0)

R> brainst$CLUSTER <- ""

R> brainst$CLUSTER[ stcl[[1]] ] <- "CLUSTER"
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Figure 7: Most significant spatio-temporal cluster of brain cancer detected in New Mexico.

6. Discussion

In this paper we have introduced DClusterm, a new package for the R statistical computing
software for the detection of disease clusters using a model-based approach, following recent
developments by several authors. Clusters are represented by dummy variables that are
introduced into a generalized linear model and different likelihoods can be used to account
for different types of data. Because of this model-based approach, fixed effects (to consider
relevant risk factors) and random effects (to account for other non-spatial unmeasured risk
factors) can be put in the linear predictor as well.

In our examples we have considered well-known datasets to show how the functions in the
DClusterm package tackle the problem of cluster detection. The results are similar to those
found in relevant papers where the same datasets have been analyzed using a similar method-
ology. In particular, we have considered the case of the detection of clusters in space and
space-time, zero-inflated data and over-dispersed data.
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