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1 Introduction

This document provides a brief tutorial on using the FLLat package, which implements the Fused Lasso
Latent Feature (FLLat) model (Nowak and others, 2011). The FLLat model is designed to identify regions
of copy number variation (CNV) in multi-sample aCGH data. In particular, it takes advantage of any
similarities shared among samples while maintaining the ability to identify any potential heterogeneity. The
model is described in more detail below.

2 Fused Lasso Latent Feature model

Suppose we have a group of S samples of aCGH data, with each sample consisting of the observed log intensity
ratios at L probe locations. The FLLat model assumes that there exists a fixed number of features that can
describe these samples and models each sample as a weighted combination of these features. Formally, the
model is given by:

yls =

J∑
j=1

βljθjs + εls, (1)

where yls denotes the observed log intensity ratio at probe location l for sample s, βlj denotes the value of
the jth feature at probe location l, θjs denotes the weight applied to the jth feature for sample s and J is
the number of features. It is a little easier to visualize when (1) is written using matrix notation:

Y = BΘ +E. (2)

In (2), each column of Y is a sample, each column of B is a feature and each column of Θ are the weights
applied to the features to generate a sample.

We fit the model by minimizing the following criterion:

F (B,Θ) = ‖Y −BΘ‖2F +

J∑
j=1

Pλ1,λ2
(β·j) , (3)

where Pλ1,λ2 (β·j) = λ1
∑L
l=1 |βlj | + λ2

∑L
l=2 |βlj − βl−1,j |. We have applied a fused lasso penalty to each

feature, encouraging the features to be both sparse and smooth. This helps us to identify the regions of
CNV. Additionally, the L2 norm of each row of Θ is constrained to be less than or equal to 1.

3 Using the FLLat Package

There are four main functions in the FLLat package: FLLat, FLLat.BIC, FLLat.PVE and FLLat.FDR. The
FLLat function fits the FLLat model for given values of J (the number of features), λ1 and λ2 (the fused lasso
tuning parameters). The FLLat.BIC function determines the optimal values of λ1 and λ2 for a given value
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of J . The FLLat.PVE function aids in choosing an appropriate value of J . Finally, the FLLat.FDR function
estimates the false discovery rate (FDR) for a fitted FLLat model. Unless the user has some pre-specified
values of J , λ1 and λ2 which they would like to use, the usual steps would be to first run FLLat.PVE to
choose J , then run FLLat.BIC to choose λ1 and λ2. We will demonstrate these steps on a simulated data
set, simaCGH, that is included in the package. This data set consists of 20 samples and 1000 probes and was
generated using model (1) with 5 features. Further simulation details can be found in Nowak and others
(2011).

3.1 FLLat.PVE

The first step is to use the FLLat.PVE function. Given a sequence of values of J , this function calculates the
percentage of variation explained (PVE) for each J , where the PVE is defined as:

PVEJ = 1−

∑S
s=1

∑L
l=1

(
yls −

∑J
j=1 β̂lj θ̂js

)2
∑S
s=1

∑L
l=1 (yls − ȳs)2

, (4)

with β̂lj and θ̂js denoting the estimates produced by the FLLat model and ȳs =
(∑L

l=1 yls

)
/L. The idea is

that after a certain point, additional features will not significantly improve the estimated fit and the PVE
will begin to flatten out. We can then choose the point at which the PVE begins to flatten out as the
appropriate value of J . The code below runs FLLat.PVE on the data set simaCGH for J = 1, . . . , 20 and also
plots the resulting PVEs:

> library(FLLat)

> data(simaCGH)

> result.pve <- FLLat.PVE(simaCGH,J.seq=1:ncol(simaCGH))

> plot(result.pve)
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3.2 FLLat.BIC

We see from the PVE plot that the PVEs begin to flatten out after J = 5. Having chosen an appropriate
value of J , we can run the FLLat.BIC function with this value of J to choose the optimal tuning parameters.
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The FLLat.BIC function first re-parameterizes λ1 and λ2 in terms of 0 < α < 1 and λ0 such that λ1 = αλ0
and λ2 = (1−α)λ0. It then searches over a two dimensional grid of α and λ0 values and chooses the optimal
values by minimizing the following criterion:

(SL)× log


∥∥∥Y − B̂Θ̂

∥∥∥2
F

SL

+ kα,λ0 log(SL), (5)

where kα,λ0
=
∑J
j=1 kα,λ0

(j) and kα,λ0
(j) is the number of unique non-zero elements in the jth feature. This

criterion attempts to strike a balance between over-fit and under-fit models. The following code runs the
FLLat.BIC function for J = 5:

> result.bic <- FLLat.BIC(simaCGH,J=5)

> result.bic$lam1

[1] 1.027413

> result.bic$lam2

[1] 9.246716

The FLLat.BIC function also returns the fitted FLLat model (opt.FLLat) for the optimal values of the
tuning parameters. We can plot the estimated features, which are plotted in order of decreasing magnitude
(where the magnitude of a feature is given by

∑L
l=1 β̂

2
lj):

> plot(result.bic$opt.FLLat)
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These features indicate the main regions of CNV that are displayed by this group of 20 samples. We can
also plot a heatmap of the estimated weights:
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> plot(result.bic$opt.FLLat,type="weights")
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The yellow and blue denote positive and negative weights, respectively, and indicate how prominently
each feature appears in each sample. Also, the clustering of the samples (based on their weights) seems to
show the existence of two main groups of samples.

3.3 FLLat.FDR

The FLLat.FDR function can now be used to estimate the FDR for this fitted FLLat model. Before we
give an example of using the FLLat.FDR function, we will first briefly describe how the FDR is defined and
estimated for the FLLat model. To identify regions of CNV (i.e., significant aberrations), we are testing the
following hypothesis for each probe location within each sample:

H0(l, s) = no aberration at probe location l for sample s.

We can use a fixed threshold and the fitted values from the FLLat model, Ŷ = B̂Θ̂, to help us identify
significant aberrations in the following manner. Given a threshold T , we declare probe location l for sample
s to be a significant aberration if |ŷls| ≥ T . In other words, every location with an absolute fitted value at
least as large as T is declared a significant aberration. Based on these declared significant aberrations, the
FDR is defined as:

FDR(T ) = E

(∑S
s=1

∑L
l=1 I (|ŷls| ≥T ) I (H0(l, s) is true)∑S

s=1

∑L
l=1 I (|ŷls| ≥T )

)
(6)

That is, the FDR is the expected proportion of declared aberrations that are not true aberrations. In order
to estimate the FDR, in particular the numerator in (6), we need to approximate the null distribution of
the data. This is done by repeatedly applying the FLLat model to permuted versions of the data Y , where
each permuted data set is obtained by randomly permuting the probe locations within every sample. We
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can then estimate the FDR by

̂FDR(T ) =
π0
∑K
k=1

(∑S
s=1

∑L
l=1 I

(∣∣ŷkls∣∣≥T ))/K∑S
s=1

∑L
l=1 I (|ŷls| ≥T )

, (7)

where ŷkls is the fitted value obtained from applying the FLLat model to the kth permuted data set, K is the
number of permuted data sets and π0 is the proportion of true null hypotheses. The value of π0 can be set
to 1 to give an upper bound for the FDR, or it can be set to something less than 1 if some prior knowledge
is available and suggests so.

The following code estimates the FDR for our fitted FLLat model over a range of 50 threshold values,
determines the threshold value which controls the FDR at 0.05 and plots the FDRs against the threshold
values.

> result.fdr <- FLLat.FDR(simaCGH,result.bic$opt.FLLat)

> result.fdr$thresh.control

[1] 0.1535668

> plot(result.fdr)
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3.4 predict.FLLat

There is also a predict method for fitted FLLat models (objects of class FLLat). Given a set of new data
and a fitted FLLat model, the predict.FLLat function returns the predicted values for the new data and
the predicted weights for producing these predicted values. Specifically, the predict.FLLat function takes
the estimated features from the fitted FLLat model, B̂, and calculates the new weights for predicting the
new data Y ∗ by minimizing the residual sum of squares:

Θ̂∗ = arg min
Θ:‖θj·‖2≤1

∥∥∥Y ∗ − B̂Θ
∥∥∥2
F
,
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where the minimization is taken over all Θ for which the L2 norm of every row is not greater than 1. Note
that predicted values and weights can only be calculated if the number of probes in the new data is the
same as that in the original data used to produce the fitted FLLat model. Also, for the predictions to be
meaningful, the new data should be similar in scale to the original data. If the predict.FLLat function is
not given any new data as an argument, it simply returns the fitted values and the estimated weights from
the fitted FLLat model.

The following code divides the simulated data set into a training set of 15 samples and a test set of 5
samples, fits a FLLat model to the training set (with pre-specified values of J , λ1 and λ2) and, using this
fitted FLLat model, calculates the predicted values and weights on the test set. The code also plots the
predicted values superimposed over the data for one of the samples in the test set.

> tr.dat <- simaCGH[,1:15]

> tst.dat <- simaCGH[,16:20]

> result.tr <- FLLat(tr.dat,J=5,lam1=1,lam2=9)

> tst.pred <- predict(result.tr,newY=tst.dat)

> plot(tst.dat[,1],xlab="Probe",ylab="Y")

> lines(tst.pred$pred.Y[,1],col="red",lwd=3)
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