
FunctionalNetworks: An Algorithm for Gene and Gene
Set Network Inference.

Alejandro Quiroz-Zárate1, Benjamin Haibe-Kains2, Hugo Aerts3, and John
Quackenbush1

1Biostatistics and Computational Biology, Dana-Farber Cancer Institute,
Boston, Massachusetts, United States of America.

2Bioinformatics and Computational Genomics Laboratory, Institut de
Recherches Cliniques de Montréal, Montreal, Quebec, Canada.

3Harvard Medical School, Boston, Massachusetts, United States of America

November 26, 2013

Contents

1 Introduction 2
1.1 Installation . 2
1.2 Further help . 2
1.3 Citing . 2

2 An application in Breast cancer. 2
2.1 Example: Data analysis under a cross-sectional setting. 3

2.1.1 Data preprocessing stage . 3
2.1.2 Network estimation . 4
2.1.3 Network estimation . 7

3 Session Info 10

1

1 Introduction

The FunctionalNetwork package provides an algorithm to infer networks at a gene and gene
set level. This package includes (i) functions to perform network inference (ii) examples to
extract and visualize the results of such comparisons.
The FunctionalNetwork package provides functions to implement the network algorithm to
infer gene and gene set networks on datasets with cross-sectional or time series design.

1.1 Installation

FunctionalNetworks requires R (>= 2.10.0) installed. To install FunctionalNetworks, source
biocLite from bioconductor:

> source("http://bioconductor.org/biocLite.R")

> biocLite("FunctionalNetworks")

Load the FunctionalNetworks, into your current workspace:

> library(FunctionalNetworks)

1.2 Further help

To view the FunctionalNetworks description and a summary of all the functions within Func-
tionalNetworks, type the following:

> library(help=FunctionalNetworks)

1.3 Citing

We are delighted if you use this package. Please do email us if you find a bug or have a
suggestion. We would be very grateful if you could cite:
Quiroz-Zarate A, Haibe-Kains B and Quackenbush J (2013). Manuscript in preparation.

2 An application in Breast cancer.

We will very briefly demonstrate the use of some functions in FunctionalNetworks by provid-
ing its application on a cross-sectional dataset.
We use the breastCancerVDX data library from Bioconductor for demonstration purposes
under a cross-sectional design. This data set corresponds to the data set from [1]. Minn,
AJ and colleagues used Affymetrix U133A Gene Chips to profile gene expression in 286
fresh-frozen tumor samples from patients with lymph-node-negative breast cancer who were
treated during 1980−95, but who did not receive systemic neoadjuvant or adjuvant therapy.
These samples correspond from the data set used in [3] with GEO reference accession number

2

GSE2034, from the tumor bank at the Erasmus Medical Center in Rotterdam, Netherlands.
An additional 58 estrogen receptor-negative samples were added from [1] GEO (GSE5327).
In total 209 tumor samples are classified as ER+ and 135 as ER-. Even though this data
set comes from a 5-year follow-up design, the way the data is conceived for this analysis is
cross-sectional.

2.1 Example: Data analysis under a cross-sectional setting.

This is an example on how to perform an analysis with the proposed method in [2] for a data
set with cross-sectional design. This example is divided in two parts. The data preparation
and the execution of the network algorithm.

2.1.1 Data preprocessing stage

The original gene expression data set Minn AJ and colleagues [1] has a U133A Affymetrix
platform. The normalized data set was saved to the variable vdx in the breastCancerVDX
data library from Bioconductor.

> library(breastCancerVDX)

> library(Biobase)

> data(vdx)

> gene.data=exprs(vdx) # Gene expression of the package

> vdx.annot=fData(vdx) # Annotation associated to the dataset

> vdx.clinc=pData(vdx) # Clinical information associated to the dataset

> # Identifying the sample identifiers associated to ER+ and ER- breast cancer

> er.pos=which(vdx.clinc$er==1)

> er.neg=which(vdx.clinc$er==0)

> # Checking if the probeset are ordered with respect to the dataset

> all(rownames(gene.data)==as.character(vdx.annot[,1]))

[1] TRUE

> # Checking if the sample identifiers are order with respect to the dataset

> all(colnames(gene.data)==as.character(vdx.clinc[,1]))

[1] TRUE

> # Changing the row identifiers to the gene identifiers of interest

> rownames(gene.data)=as.character(vdx.annot[,2])

> vec.gene=NULL

> vec.ids=NULL

> for(i in 1:dim(vdx.annot)[1])

+ {

+ aux=strsplit(gsub("[^[:alnum:]]"," ",vdx.annot[i,3])," ")

+ aux.num=unlist(lapply(aux,nchar))

+ aux=aux[[1]][which(aux.num!=0)]

+ aux.ids=rep(i,length(aux))

+ vec.ids=c(vec.ids,aux.ids)

+ vec.gene=c(vec.gene,aux)

3

+ }

> which.erase=which(is.na(vec.gene)==T)

> vec.gene=vec.gene[-which.erase]

> vec.ids=vec.ids[-which.erase]

> unique.genes=sort(unique(vec.gene))

> # Erase the first 26, because they are not reported in GO

> unique.genes=unique.genes[-seq(1,26)]

> #= Because we have several measurements for a gene, we filter the genes

> # Function to obtain the genes with highest variabilty

> indices=unlist(lapply(unique.genes,function(x){quienes=vec.gene==x;aux=which(quienes==T)

+ aux.2=vec.ids[aux]

+ if(length(aux)>1){

+ aux.2=vec.ids[aux]

+ var.r = apply(gene.data[aux.2,],1,var)

+ aux.2=aux.2[which.max(var.r)]};return(aux.2)}))

> gene.data=gene.data[indices,] # Final genes to keep

> rownames(gene.data)=unique.genes # Assign the gene symbols

In order to implement the Network inference algorithm, there are some datasets that need to
be generated from the gene expression data we have just created: gene.data. At this stage
we will use the function data.generation from the FunctionalNetwork package. For this
example it is assumed that the gmt file containing the Molecular Functions (MF) ontology
from GO is stored in the path: ”/Users/MyLapTop/Netwokrs/c5.mf.v4.0.symbols.gmt”. The
”c5.mf.v4.0.symbols.gmt” file can be dowloaded from the MSigDB web site:
”http://www.broadinstitute.org/gsea/msigdb/index.jsp”

> gmt.file.path="/Users/MyLapTop/Netwokrs/c5.mf.v4.0.symbols.gmt"

> min.gene.set.size=5

> data4network=data.generation(gmt.file.path,gene.data,er.neg,min.gene.set.size)

Before we estimated the networks, there is a crucial step: the computation of the Bayesian
Information Criteria (BIC) for all the possible associations among genes and among gene sets
[2]. This is done before the network computation step

> gene.data=data4network$gene.data

> affy.loc=data4network$affy.loc

> set.data=data4network$set.data

> bic4network=bic.generation(gene.data,affy.loc,set.data)

2.1.2 Network estimation

To perform the network estimation, the results of the functions data.generation and
bic.generation are needed. It has to be noted that the calculation of the BIC at the
gene and gene set level is very time consuming. So only for purposes of this example
we generated toy datasets. These toy datasets are based on a random selection of 5 of
the genes from the original gene.data. These toy datasets from the application of the
functions data.generation and bic.generation are stored in data.4.toy.example and
bic.4.toy.network on this package. In total there are 216 genes considered for the gene
network, (see affy.loc in bic.4.toy.network) and a toltal of 62 gene sets for the gene
set network (see set.data in data.4.toy.network)

> library(FunctionalNetworks)

> data(data.4.toy.network,package="FunctionalNetworks")

4

> data(bic.4.toy.network,package="FunctionalNetworks")

> nsim=1000

> burn=100

> network.toy.estimation=network.estimation(nsim,burn,data.4.toy.network,bic.4.toy.network)

Percentage of iterations completed: 1

Percentage of iterations completed: 2

Percentage of iterations completed: 3

Percentage of iterations completed: 4

Percentage of iterations completed: 5

Percentage of iterations completed: 6

Percentage of iterations completed: 7

Percentage of iterations completed: 8

Percentage of iterations completed: 9

Percentage of iterations completed: 10

Percentage of iterations completed: 11

Percentage of iterations completed: 12

Percentage of iterations completed: 13

Percentage of iterations completed: 14

Percentage of iterations completed: 15

Percentage of iterations completed: 16

Percentage of iterations completed: 17

Percentage of iterations completed: 18

Percentage of iterations completed: 19

Percentage of iterations completed: 20

Percentage of iterations completed: 21

Percentage of iterations completed: 22

Percentage of iterations completed: 23

Percentage of iterations completed: 24

Percentage of iterations completed: 25

Percentage of iterations completed: 26

Percentage of iterations completed: 27

Percentage of iterations completed: 28

Percentage of iterations completed: 29

Percentage of iterations completed: 30

Percentage of iterations completed: 31

Percentage of iterations completed: 32

Percentage of iterations completed: 33

Percentage of iterations completed: 34

Percentage of iterations completed: 35

Percentage of iterations completed: 36

Percentage of iterations completed: 37

Percentage of iterations completed: 38

Percentage of iterations completed: 39

Percentage of iterations completed: 40

Percentage of iterations completed: 41

Percentage of iterations completed: 42

Percentage of iterations completed: 43

Percentage of iterations completed: 44

Percentage of iterations completed: 45

Percentage of iterations completed: 46

5

Percentage of iterations completed: 47

Percentage of iterations completed: 48

Percentage of iterations completed: 49

Percentage of iterations completed: 50

Percentage of iterations completed: 51

Percentage of iterations completed: 52

Percentage of iterations completed: 53

Percentage of iterations completed: 54

Percentage of iterations completed: 55

Percentage of iterations completed: 56

Percentage of iterations completed: 57

Percentage of iterations completed: 58

Percentage of iterations completed: 59

Percentage of iterations completed: 60

Percentage of iterations completed: 61

Percentage of iterations completed: 62

Percentage of iterations completed: 63

Percentage of iterations completed: 64

Percentage of iterations completed: 65

Percentage of iterations completed: 66

Percentage of iterations completed: 67

Percentage of iterations completed: 68

Percentage of iterations completed: 69

Percentage of iterations completed: 70

Percentage of iterations completed: 71

Percentage of iterations completed: 72

Percentage of iterations completed: 73

Percentage of iterations completed: 74

Percentage of iterations completed: 75

Percentage of iterations completed: 76

Percentage of iterations completed: 77

Percentage of iterations completed: 78

Percentage of iterations completed: 79

Percentage of iterations completed: 80

Percentage of iterations completed: 81

Percentage of iterations completed: 82

Percentage of iterations completed: 83

Percentage of iterations completed: 84

Percentage of iterations completed: 85

Percentage of iterations completed: 86

Percentage of iterations completed: 87

Percentage of iterations completed: 88

Percentage of iterations completed: 89

Percentage of iterations completed: 90

Percentage of iterations completed: 91

Percentage of iterations completed: 92

Percentage of iterations completed: 93

Percentage of iterations completed: 94

Percentage of iterations completed: 95

Percentage of iterations completed: 96

Percentage of iterations completed: 97

6

Percentage of iterations completed: 98

Percentage of iterations completed: 99

Percentage of iterations completed: 100

The result of the network estimation function is stored in network.toy.estimation. This
object has 3 items: Algorithm.results, Set.names and Gene.names. The object Al-

gorithm.results containes 6 different results: Gene.network, Set.network, BIC.gene,
BIC.set, RSS.gene and RSS.set. The result Gene.network correspond to the matrix as-
sociated to the gene network. The rows correspond to the objective nodes and the columns
to the source nodes. The entries of this matrix are the number of times each source node
was a predictor of the objective node. The result Set.network correspond to the matrix
associated to the gene set network. The rows correspond to the objective nodes and the
columns to the source nodes. The entries of this matrix are the number of times each source
node was a predictor of the objective node. BIC.gene corresponds to the overall BIC of
the gene network for each iteration. BIC.set corresponds to the overall BIC of the gene
set network for each iteration. RSS.gene corresponds to the overall residual sum of squares
(RSS) of the gene network for each iteration. RSS.set corresponds to the overall RSS of
the gene set network for each iteration. Finally Set.names and Gene.names corrspon to the
names of the nodes on the gene set and gene network respectively.

2.1.3 Network estimation

To analyze the performance of the network one can plot the RSS.gene or the BIC.set. The
following are examples of such commands:

> library(FunctionalNetworks)

> data(data.4.toy.network,package="FunctionalNetworks")

> data(bic.4.toy.network,package="FunctionalNetworks")

> nsim=1000

> burn=100

> network.toy.estimation=network.estimation(nsim,burn,data.4.toy.network,bic.4.toy.network)

Percentage of iterations completed: 1

Percentage of iterations completed: 2

Percentage of iterations completed: 3

Percentage of iterations completed: 4

Percentage of iterations completed: 5

Percentage of iterations completed: 6

Percentage of iterations completed: 7

Percentage of iterations completed: 8

Percentage of iterations completed: 9

Percentage of iterations completed: 10

Percentage of iterations completed: 11

Percentage of iterations completed: 12

Percentage of iterations completed: 13

Percentage of iterations completed: 14

Percentage of iterations completed: 15

Percentage of iterations completed: 16

Percentage of iterations completed: 17

7

Percentage of iterations completed: 18

Percentage of iterations completed: 19

Percentage of iterations completed: 20

Percentage of iterations completed: 21

Percentage of iterations completed: 22

Percentage of iterations completed: 23

Percentage of iterations completed: 24

Percentage of iterations completed: 25

Percentage of iterations completed: 26

Percentage of iterations completed: 27

Percentage of iterations completed: 28

Percentage of iterations completed: 29

Percentage of iterations completed: 30

Percentage of iterations completed: 31

Percentage of iterations completed: 32

Percentage of iterations completed: 33

Percentage of iterations completed: 34

Percentage of iterations completed: 35

Percentage of iterations completed: 36

Percentage of iterations completed: 37

Percentage of iterations completed: 38

Percentage of iterations completed: 39

Percentage of iterations completed: 40

Percentage of iterations completed: 41

Percentage of iterations completed: 42

Percentage of iterations completed: 43

Percentage of iterations completed: 44

Percentage of iterations completed: 45

Percentage of iterations completed: 46

Percentage of iterations completed: 47

Percentage of iterations completed: 48

Percentage of iterations completed: 49

Percentage of iterations completed: 50

Percentage of iterations completed: 51

Percentage of iterations completed: 52

Percentage of iterations completed: 53

Percentage of iterations completed: 54

Percentage of iterations completed: 55

Percentage of iterations completed: 56

Percentage of iterations completed: 57

Percentage of iterations completed: 58

Percentage of iterations completed: 59

Percentage of iterations completed: 60

Percentage of iterations completed: 61

Percentage of iterations completed: 62

Percentage of iterations completed: 63

Percentage of iterations completed: 64

Percentage of iterations completed: 65

Percentage of iterations completed: 66

Percentage of iterations completed: 67

Percentage of iterations completed: 68

8

Percentage of iterations completed: 69

Percentage of iterations completed: 70

Percentage of iterations completed: 71

Percentage of iterations completed: 72

Percentage of iterations completed: 73

Percentage of iterations completed: 74

Percentage of iterations completed: 75

Percentage of iterations completed: 76

Percentage of iterations completed: 77

Percentage of iterations completed: 78

Percentage of iterations completed: 79

Percentage of iterations completed: 80

Percentage of iterations completed: 81

Percentage of iterations completed: 82

Percentage of iterations completed: 83

Percentage of iterations completed: 84

Percentage of iterations completed: 85

Percentage of iterations completed: 86

Percentage of iterations completed: 87

Percentage of iterations completed: 88

Percentage of iterations completed: 89

Percentage of iterations completed: 90

Percentage of iterations completed: 91

Percentage of iterations completed: 92

Percentage of iterations completed: 93

Percentage of iterations completed: 94

Percentage of iterations completed: 95

Percentage of iterations completed: 96

Percentage of iterations completed: 97

Percentage of iterations completed: 98

Percentage of iterations completed: 99

Percentage of iterations completed: 100

> par(mfrow=c(2,1))

> plot(network.toy.estimation$Algorithm.results$BIC.set,xlab="Iterations"

+ ,ylab="BIC",main="Overall BIC of the gene set network",type="l",lwd=3)

> usr=par("usr")

> rect(1000,usr[3],100,usr[4],col="gray80")

> lines(network.toy.estimation$Algorithm.results$BIC.set,type="l",lwd=3)

> legend(400,18000,legend=c("BIC","Iterations considered"),col=c("black","gray80")

+ ,lwd=c(3,0),fill=c("white","gray80"),border=c("white","black"),bg="white")

> plot(network.toy.estimation$Algorithm.results$RSS.gene,xlab="Iterations"

+ ,ylab="RSS",main="Overall RSS of the gene network",type="l",lwd=3)

> usr=par("usr")

> rect(1000,usr[3],100,usr[4],col="gray80")

> lines(network.toy.estimation$Algorithm.results$RSS.gene,type="l",lwd=3)

> legend(400,4600,legend=c("RSS","Iterations considered"),col=c("black","gray80")

+ ,lwd=c(3,0),fill=c("white","gray80"),border=c("white","black"),bg="white")

9

3 Session Info

• R version 3.0.2 (2013-09-25), x86_64-apple-darwin10.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils

• Other packages: Biobase 2.20.1, BiocGenerics 0.6.0, breastCancerVDX 1.0.5,
FunctionalNetworks 0.99.6

• Loaded via a namespace (and not attached): tools 3.0.2

10

References

[1] Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D, Kreike B, Zhang Y, Wang
Y, Ishwaran H, Foekens JA, Van de Vijver M and Massagué J: Lung Metastasis Genes
Couple Breast Tumor Size and Metastatic Spread. PNAS, 104(16), 6740-6745. 2007.

[2] Quiroz-Zarate A and Quackenbush J XXXX: Biological functional networks Journal
Vol(Num):Page 1-Page N. 2013.

[3] Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yanh F, Talantov D, Tim-
mermans M, Gelder, MEMG, Yu J, Jatkoe T, Berns EMJJ, Atkins D and Foekens
JA: Gene-expression Profiles to Predict Distant Metastasis of Lymph-Node-Negative
Primary Breast Cancer. Lancet, 365, 671-679. 2005.

11

	Introduction
	Installation
	Further help
	Citing

	An application in Breast cancer.
	Example: Data analysis under a cross-sectional setting.
	Data preprocessing stage
	Network estimation
	Network estimation

	Session Info

