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1 Introduction

This document is intended to serve as a guide for the usage of the HSROC package to be

used within the free statistical software environment, R [6]. Therefore, the main goal is to

describe the functions in the package via different examples without emphasing the statistical

theory behind them. The likelihood of the HSROC model and prior distributions appear in

the appendix. The interested reader can learn more about the statistical theory in [1].

The HSROC package consists of 4 functions and 2 data sets. The two main functions are

HSROC and HSROCSummary. HSROC, which must be run first, is used to implement a

Gibbs sampler while HSROCSummary produces summaries for the HSROC model parame-

ters. The remaining 2 functions are secondary functions : simdata simulates a dataset based

on the HSROC diagnostic meta-analysis model, while beta.parameter returns the shape pa-

rameters of the Beta(α, β) probability corresponding to a given range.

In the following sections, we will present 3 examples to explain how to make use of the

functions within the HSROC package. In section 2 we present a simple example where a test

under evaluation is compared to a perfect reference test when both tests are independent

given the true disease status. In section 3, we present an example where the test under evalu-

tation is now compared to an imperfect reference test, while both tests remain conditionally

independent from each other. In section 4 we show how to simulate data from a HSROC

diagnostic meta-analysis model
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2 Example 1 : Meta-Analysis in the presence of a gold

standard reference test assuming conditional inde-

pendence

We start with the simplest mode, where the reference test is assumed to be a gold standard

(i.e. sensitivity and specificity of the reference test both equal to 100%).

For this example, we use data on magnetic resonance (MR) imaging from 10 studies reviewed

in a study by Scheidler et al [5]. This is a subset of the illustration dataset used in the paper

describing the HSROC model of Rutter and Gatsonis [4].

2.1 Data preparation

After having installed the package, the library can be loaded with the following command :

> library(HSROC)

The data on MR imaging is included in the library and can be loaded as follows :

> data(MRI)

> MRI

++ +- -+ --

1 9 2 2 44

2 3 6 5 32

3 3 2 1 16

4 3 1 12 44

5 1 1 6 16

6 7 2 22 167
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7 12 4 4 29

8 23 5 14 230

9 8 5 5 53

10 16 2 2 22

The columns ++,+−,−+,−− represent the results of the cross tabulation between MRI (the

test under evaluation) and histologic/cytologic specimens obtained by surgery or lymph node

biopsy (reference test). The colummn headings ++,+−,−+,−− correspond to (MRI +,

reference +), (MRI +, reference -), (MRI -, reference +) and (MRI -, reference -), respectively.

In order to estimate the parameters of the conditional independence model, we use the

function HSROC. The arguments of the function are as follows :

> args(HSROC)

function (data, iter.num, init = NULL, sub_rs = NULL, first.run = TRUE,

path = getwd(), refresh = 100, prior.SEref = NULL, prior.SPref = NULL,

prior_PI = c(0, 1), prior_LAMBDA = c(-3, 3), prior_THETA = c(-1.5,

1.5), prior_sd_alpha = list(0, 2, "sd"), prior_sd_theta = list(0,

2, "sd"), prior_beta = c(-0.75, 0.75))

This function results in drawing a sample from the posterior distribution of the model via a

single chain gibbs sampler.

A number of arguments, such as those determining the prior distributions, have default

values. In particular, the default values prior.SEref = NULL and prior.SPref = NULL

define a gold standard reference test. The Gibbs sampler requires initial values which we

will provide in this example. Therefore, the only argument for which we will alter the

default in this example, is the init argument. When this argument is left equal to its default

value, the initial values required by the Gibbs sampler are randomly selected by the HSROC

function itself based on the prior distributions.
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The init argument is a list object composed of the initial values of the within-study param-

eters as the first element of the list and the initial values of the between-study parameters

as the second element of the list. The within-study element must be a matrix-like object

with each column corresponding to a different parameter and each row corresponding to a

different study, while the between-study element must be a vector with each element corre-

sponding to a different parameter. Suppose that the following inital values are desired for

each of the within-study parameters αi (diagnostic accuracy of study i), θi (the cut-off value

for defining a positive test in study i), S1i (sensitivity of study i for the test under evaluation

), C1i (specificity of study i for the test under evaluation ), and πi (the prevalence of study

i), for the MR meta-analysis

> init.alpha = c(2.51, 2.54, 3.81, 2.41, 2.64, 2.70, 3.31, 3.39, 3.11, 2.99)

> init.theta = c(-0.51, -0.39, 0.33, -2.06, -0.14, -0.08, 1.11, 0.38, -0.86,

+-0.38)

> init.s1 = rep(0.9,10)

> init.c1 = rep(0.9,10)

> init.pi = c(0.38, 0.17, 0.78, 0.07, 0.74, 0.84, 0.52, 0.95, 0.07, 0.56)

We first create a matrix of within-study initial values

> init_within = cbind(init.alpha, init.theta, init.s1, init.c1, init.pi)

The ordering of the initial values in the cbind function above is important and must not be

altered. Placing init.theta before init.alpha, that is

> init_within = cbind(init.theta, init.alpha, init.s1, init.c1, init.pi)
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will result in initialising the αi parameters with the initial values of θi and vice-versa. This

could possibly lead to slower convergence of the Gibbs sampler in case the starting values

are not suitable.

Now, for the between-study parameters Θ (the overall mean cut-off value for defining a posi-

tive test), σθ (the between-study standard deviation in the cut-off), Λ (the overall diagnostic

accuracy), σα (the between-study standard deviation of the difference in means), and β (the

logarithm of the ratio of the standard deviation of test results among patients with the dis-

ease and among patients without the disease), let’s suppose the following starting values are

to be used :

> init.THETA = -0.16

> init.sig.theta = 0.75

> init.LAMBDA = 2.58

> init.sig.alpha = 0.5

> init.beta = 0.25

We then create the vector of between-study initial values as follows :

> init_between = c(init.THETA, init.sig.theta, init.LAMBDA, init.sig.alpha, init.beta)

For the same reason discussed above, the ordering in the vector above must be kept as is.

Finally, we simply need to merge the within-study and between-study initial values created

above into a list, as follow

> init = list(init_within, init_between)
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2.2 Running the Gibbs sampler

To complete the function call we need to provide two additional arguments data and iter.num

for the data set and number of gibbs sampler iterations. In this example, we will run the

Gibbs sampler for 50,000 iterations. We thus make the following call

> HSROC(data=MRI, iter.num=50000, init=init )

Rather than manage very large matrices of posterior samples for each parameter within R,

that grow in size as the number of iterations increases, the function creates text files in the

default working directory, or in any specified working directory through the path argument.

This should help computational speed as the number of iterations increase. Once the function

has reached the selected number of iterations, the following message will appear

[1] The files created during the Gibbs sampler process are in "C:\... "

where C : \... is the working directory where the text files were created and saved.

2.3 Interpreting the output files

The HSROCSummary function can be used to obtain descriptive statistics and graphs using

the posterior sample. The arguments of the function are as follows

> args(HSROCSummary)

function (data, burn_in = 0, iter.keep = NULL, Thin = 1, sub_rs = NULL,

point_estimate = c("median", "mean"), summary.path = getwd(),

chain = getwd(), tv = NULL, digit = 6, print_plot = FALSE,

plot.ind.studies = TRUE, conf_region = TRUE, predict_region = TRUE,
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col.pooled.estimate = "red", col.predict.region = "blue",

lty.conf.region = "dotdash", lty.predict.region = "dotted",

region_level = 0.95, trunc_low = 0.025, trunc_up = 0.025)

For our example, we call the function as follows :

> HSROCSummary(data = MRI, burn_in=10000, Thin=2, print_plot=TRUE )

The descriptive statistics created by the function are discussed in section 2.3.1. The argument

data simply needs to be set equal to the dataset. In the case of burn in, it indicates how many

burn-in iterations are to be dropped before calculation of the estimates. The argument Thin

defines the thinning interval. Finally, print plot = TRUE allows the creation of graphical

tools to help the user assess if the convergence of the Gibbs sampler has been achieved. The

different plots produced by the function will be discussed in section 2.3.2.

2.3.1 Descriptive statistics

The HSROCSummary function returns a summary of the results in the R GUI and more

detailed results in a text file within the working directory. In the R GUI it lists the point

estimates and 95% highest posterior density (HPD) credible intervals for the between-study

and within-study parameters. The text file that is saved in the working directory is divided

into three sections.

The first section (displayed in Fig-

ure 1) lists some of the general set-

tings. The number of gibbs sam-

pler chains used in this example

was 1. A total of 50,000 itera-

tions were used with a burn in of
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10,000. Every second value was

kept for estimation (the thinning

interval). This left us with a sam-

ple of 20,000 values drawn from the

posterior distribution of each pa-

rameter we are interested in. This

section also lists the location of the file on the hard drive, the date of creation of the summary

file and the nature of the reference test (perfect or imperfect). The data set is also listed.

Figure 2

The next section of the output

gives a summary of the prior distri-

butions used (Figure 2), which hap-

pen to be the default prior distri-

butions in this example. The prior

distribution used for the prevalence

was a Beta(1,1), distribution, that

is a beta distribution with scale and

shape parameters equal to 1. This

is equivalent to a uniform prior for the prevalence, alowing all possible values to be equally

likely. The log of the ratio between the two standard deviations, β was assumed to follow a

U(−0.75, 0.75) distribution. The overall mean cut-off Θ was assigned a uniform distribution

ranging from −1.5 to 1.5. The pooled diagnostic accuracy Λ followed a uniform distribution

over −3 to 3. Finally, parameters σα and σθ were both assumed to follow U(0, 2) distribution.

The final section lists descriptive statistics for the parameters of the model. In addition

to the point estimate and highest posterior density (HPD) intervals, it also includes Monte

Carlo (MC) error and standard deviation of the posterior sample. The MC error is calculated

via the batch mean method described in Ntzoufras [3]. For this reason, the user may note

that no estimation will be provided if less than 100 iterations are left, once the burn in and

thinning are taken into account. In this situation, the following message would be displayed
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> Error in HSROCSummary(data = MRI, burn_in = 1, Thin = 1, i = 50, print_plot = T) :

You don✬t have enough iterations to estimate the MC error.

After taking into account the "burn in" and "thinning interval",

you need at least 100 iterations to proceed.

The addition of the MC error and the standard error provide means for examining the

precision of the estimation. One might want to run the Gibbs sampler until the MC error

is sufficiently small. For example, a desirable criterion might be to have the MC error

of each parameter smaller than 10% of its posterior standard deviation. The estimates of

the between-study parameters and within-study parameters are shown in Figures 3 and 4

respectively.

Figure 3

For example, the cut-off param-

eter Θ was estimated to be

0.900203 with a 95% highest pos-

terior density interval of (0.435669,

1.368114). The standard deviation

and MC error were estimated to

be 0.239167 and 0.011831, respec-

tively. We see that the MC error

is smaller than 10% of the poste-

rior standard deviation for Θ. Other estimates included here are those of Λ, β, σθ and

σα. The estimates of the pooled sensitivity and specificity, denoted S overall and C overall,

are obtained as functions of Θ, Λ and β. A similar analysis of the MR imaging data was

performed by Rutter and Gatsonis [4] using an HSROC model with a logit link function.

They reported a pooled sensitivity estimate of 0.541 with a 95% equal-tail credible interval

of (0.286, 0.771) and a pooled specificity estimate of 0.953 with a 95% equal-tail credible

interval of (0.907, 0.981). Even though both models used a different link function, it is reas-

suring to notice that our estimates of S overall and C overall are satisfactorily close to the

estimates of Rutter and Gatsonis. The difference noticed between their credible intervals and
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ours comes from the fact that the HSROCSummary function returns 95% highest posterior

density intervals.

Figure 4 displays a portion of the within-study parameter estimates. We see that estimates

for individual studies are grouped by parameters.

Figure 4

For example, the estimates of θ1

(the cut-off in study 1), θ2, θ3,

. . . , θ10 are shown in the first

sub-section of the within-study pa-

rameters section. Just like the

between-study estimates of Figure

3, the standard deviation, MC er-

ror and 95% HPD interval are

given.

2.3.2 The graphical summary

The HSROCSummary function cre-

ates various plots to help the user

judge if the descriptive statistics of

section 2.3.1 are reliable. Among

them, a trace plot for each pa-

rameter can be used to help evalu-

ate whether the Gibbs sampler has

converged. Each trace plot is a

scatter plot of the posterior sample of a single parameter vs the iteration number of the

Gibbs sampler. The trace plots for the sensitivity of MRI in studies 1, 2, 3, 6, 7 and 8 are

shown in Figure 5.
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Figure 5

For our example, we can see that convergence seems to be achieved fairly quickly.

Another graphical summary produced by the HSROCSummary function is the density plot.

It plots a smoothed posterior kernel density function for each parameter. Figure 6 shows

density plots for some of the between-study parameters.

Finally, the function also produce a summary receiver operating characteristic (SROC) curve.

Finally, the function also produce a summary receiver operating characteristic (SROC) curve.

The SROC curve summarizes the relationship between sensitivity and (1 - specificity) across

studies, taking into account the between-study heterogeneity. The SROC curve for the MRI

data is shown in Figure 7. Individual studies are depicted by a clear circle. The radius of

the circle is proportional to the sample size of the study. The red circle marks the pooled

sensitivity and specificity across the 10 studies in this meta-analysis. The 95% prediction

region is defined by the blue dotted-curve. The red dot-dashed-curve marks the boundary

of the 95% credible region for the pooled estimates of sensitivity and specificity across the

10 studies.
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Figure 6

2.3.3 Multiple chains to assess convergence

Gelman and Rubin [2] recommend running the Gibbs sampler multiple times starting from

different initial values in order to assess convergence.

In our example, we have run a single chain so far with initial values given in section 2.1.

Let’s say we would like to run two more chains. The idea is to repeat sections 2.1 and

2.2 with a different set of initial values and a different working directory as many times as

desired. Here to run 2 more chains, we would repeat steps 2.1 and 2.2 two more times.

Instead of using the default working directory, let’s suppose we had previously assigned a

directory to the path argument in the HSROC function.

> dir.create("C:/MRI/Chain1")

> HSROC(data=MRI, iter.num=50000, init=init, path="C:/MRI/Chain1" )

Now to run the second chain, we would make the following call
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Figure 7

> dir.create("C:/MRI/Chain2")

> HSROC(data=MRI, iter.num=50000, init=init2, path="C:/MRI/Chain2" )

where init2 is our second set of initial values. Finally, to run our third chain, we simply run

> dir.create("C:/MRI/Chain3")

> HSROC(data=MRI, iter.num=50000, init=init3, path="C:/MRI/Chain3" )

For the sake of efficiency, one might want to run all 3 chains at the same time by running

each chain in separate R windows. In other words, we could open 3 different R sessions and

run the HSROC function with respective initial values and working directory, one in each R

session, simultaneously.

Once all 3 chains have reached the desired number of iterations, a single call to the function

HSROCSummary will summarize all 3 chains.

> HSROCSummary(data = MRI, burn_in=10000, Thin=2, print_plot=TRUE,
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+ path="C:/MRI/All_Chains", chain=list("C:/MRI/Chain1","C:/MRI/Chain2",

+ "C:/MRI/Chain3") )

Through the path argument we define a new working directory to save all results and plots

produced by the function. The chain argument points to the working directories where

the posterior samples from each chain were previously saved. The structure of the output

remains the same as the one described in section 2.3 except for the trace plot which overlays

the posterior samples of all 3 chains simultaneously (see Figure 8).

Figure 8

In our example, we can see that all 3 chains (each chain represented by a different color)

converged quickly to a common region of the parameter space as is desirable.
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3 Example 2 : Meta-Analysis in the presence of mul-

tiple imperfect reference tests assuming conditional

independence

In this example we consider a situation where we no longer have a perfect reference standard.

We will use data from a meta-analysis of TB pleuritis where 3 different imperfect reference

standards were used. We assume that the test under evaluation is independent of the ref-

erence test in each study given the true disease status. The data set consists of 11 primary

studies of in-house nucleic acid amplification tests of the IS6110 target, a commonly used

rapid test for tuberculous pleuritis.

3.1 Data preparation

The data set is avalaible as part of the HSROC package.

> data(In.house)

> In.house

++ +- -+ --

1 11 1 14 75

2 1 1 3 25

3 8 0 1 16

4 16 6 0 43

5 16 0 1 56

6 9 0 6 10

7 13 0 4 25

8 17 2 4 84

9 7 0 3 13

10 14 1 19 97
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11 31 7 11 63

In order to take into account the multiple imperfect reference standards, we must make

changes to the default values of three arguments of the HSROC function seen in section 2.1.

First, the argument sub rs must be set to reflect the desired number of reference standards,

second, the init argument must now include initial values of sensitivity and specificity of the

reference standards and third, prior distributions must be provided for the sensitivity and

specificity of the reference standards via the arguments prior.SEref and prior.SPref.

In our example, there were 3 reference standards. The first reference standard was used in

studies 1 and 2, the second reference standard in studies 3 and 4 and finally, studies 5 to

11 used the third reference standard. The sub rs argument, is a list variable where the first

element of the list corresponds to the number of different reference standards used. The

remaining elements specify the study numbers that used each reference test. For the TB

pleuritis example :

> REFSTD = list(3, 1:2, 3:4, 5:11)

In general, if the dataset includes k reference tests, sub rs must comprise k + 1 elements.

The next step is to define the initial values for the sensitivity and specificity of the reference

standards. We define

> init.s2 = c(0.4, 0.45, 0.8)

> init.c2 = rep(0.95,3)

the initial values of the 3 reference standards. That is, reference standard 1 has sensitivity

= 40% and specificity = 95%, reference standard 2 has sensitivity = 45% and specificity

= 95% and reference standard 3 has sensitivity = 80% and specificity = 95%. We now

combine init.s2 and init.c2 into a single matrix
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> init_ref = rbind(init.s2, init.c2)

the first row being the sensitivities and second row being the specificities. We then put these

initial values together with those defined in section 2.1 as follows,

> init = list(init_within, init_between, init_ref)

The prior information on the sensitivity and specificity of the reference tests can be provided

in terms of the plausible ranges of these parameters. Based on a literature review, it was

assumed that reference test 1 has a sensitivity ranging from 20% to 60%, reference test 2 has

a sensitivity ranging from 20% to 70% and reference test 3’s sensitivity is ranging from 70%

to 90%. It is also assumed that the specificity of all 3 tests is between 90% and 100%. This

information is expressed as :

> S2.low = c(0.2, 0.2, 0.7) ; S2.up = c(0.6, 0.7, 0.9) ;

> C2.low = rep(0.9,3) ; C2.up = rep(1,3) ;

3.2 Running the Gibbs sampler

To run the Gibbs sampler, we make the following call to the HSROC function

> HSROC(data=In.house, iter.num=50000, init=init, sub_rs=REFSTD,

+ prior.SEref=c(S2.low, S2.up), prior.SPref=c(C2.low, C2.up))

3.3 Interpreting the output files

This section is very similar to section 2.3. We will only discuss the new features involved

when using a model with multiple imperfect reference tests. Previously, the HSROCSummary
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function was called using data, burn in, Thin and print plot arguments, leaving all other

arguments at their respective default value. Now in this section, in addition to these 4

arguments, we also need to define the sub rs argument in the same way as in section 3.1.

> HSROCSummary(data = In.house, burn_in=10000, Thin=2, sub_rs=REFSTD,

+ print_plot=TRUE )

3.3.1 Descriptive statistics

The summary output of this section is similar to the one seen in section 2.3.1. Of course,

the main difference being that we now have extra information on the reference tests.

Figure 9

It also returns the prior ranges

translated in terms of beta distri-

bution parameters. For example,

we provided a prior range of 20%

up to 60% for the sensitivity of

the reference standard for studies

1 and 2. This is transformed into a

Beta(α = 9.2, β = 13.8) prior dis-

tribution by equating the centre of

the range to the mean of the Beta

distribution (α/(α + β)) and 25%

of the range to the standard deviation (αβ/((α + β)2(α + β + 1)))

The between-study parameters sec-

tion of the summary output text

file now includes the estimates of

sensitivity and specificity for each

reference standard (see figure 10).
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For example, the sensitivity of the

reference standard in studies 1 and

2 was estimated to be 0.579393

(0.421502, 0.735355). The MC er-

ror (0.000782) is lower than 10% of

the standard deviation (0.080355).

Similarly, estimation of the speci-

ficity of the reference standard in

studies 1 and 2 is 0.937374 with 95% HPD interval given by (0.881911, 0.984617). The MC

error (0.000673) is also well below 10% of the standard deviation (0.027641).

3.3.2 The graphical summary

Besides the plots presented in section 2.3.2, 2 more files with plots are created when the model

allows for imperfect reference standards. The first contains trace plots for the sensitivity and

specificity of the different reference standards while the other contains their density plots.

Figure 11 shows both trace and density plots for some of these parameters in the TB pleuritis

example.

(a) (b)

Figure 11
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4 Simulating data sets

4.1 Simulation of data arising from a HSROC model assuming

conditional independence between index and reference tests

The HSROC package contains a function that allows simulation of a data set coming from

a HSROC diagnostic meta-analysis model. The arguments of the function are

> args(simdata)

function (N, n, n.random = "FALSE", sub_rs, prev, se_ref = NULL,

sp_ref = NULL, T, range.T=c(-Inf, Inf), L, range.L=c(-Inf, Inf),

sd_t, sd_a, b, path=getwd())

The user must specify the values of the between-study parameters (Θ, Λ, β, σα and σθ),

the number of studies desired and the number of individuals within each study. In addition,

the sensitivity and specificity of each reference test must be specified in case of non gold

standard tests.

Let’s suppose we want to generate a dataset of 6 studies with 20 individuals within each

study and with the following parameters

> beta = 0.25

> LAMBDA = 2.5

> sd_alpha = 0.75 ;

> THETA = -0.2

> sd_theta = 0.50 ;

> pi = c(0.15,0.25,0.10,0.12,0.22,0.18)

The following call would generate the desired data under the assumption that a perfect

reference test is used in each study.
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> sim.data = simdata(N=6, n=20, prev=pi, T=THETA, L=LAMBDA,

+ sd_t=sd_theta, sd_a=sd_alpha, b=beta)

The resulting data looks like

$Data

++ +- -+ --

[1,] 3 6 0 11

[2,] 6 1 0 13

[3,] 2 0 1 17

[4,] 2 0 2 16

[5,] 4 5 0 11

[6,] 2 0 1 17

$❵Within study parameters❵

alpha theta ++ -- prev

[1,] 1.475586 -0.2052966 0.7973728 0.7268779 0.15

[2,] 2.657826 -0.5538340 0.9516953 0.8101039 0.25

[3,] 2.906462 0.6132198 0.7707464 0.9903992 0.10

[4,] 3.604026 0.1193441 0.9312215 0.9852665 0.12

[5,] 3.119060 -0.9392145 0.9862777 0.7589440 0.22

[6,] 3.269660 0.5130067 0.8389143 0.9925297 0.18

$❵Between study parameters❵

THETA sigma theta LAMBDA sigma alpha beta Overal ++ Overall --

-0.2000000 0.5000000 2.5000000 0.7500000 0.2500000 0.8996607 0.8829387

$❵Reference standard❵
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[1] "PERFECT"

The n argument can be modified e.g. n = c(20,50,25,35,105,15) so each study has a unique

sample size provided by the user, resulting in the data below :

$Data

++ +- -+ --

[1,] 1 1 0 18

[2,] 7 0 3 40

[3,] 3 5 0 17

[4,] 4 2 1 28

[5,] 26 23 0 56

[6,] 3 2 0 10

Alternatively, a unique sample size can be selected randomly within a range as follow

> n = seq(50,250,1)

resulting in the data below :

$Data

++ +- -+ --

[1,] 11 1 0 42

[2,] 41 95 6 74

[3,] 22 8 1 206

[4,] 25 56 0 146

[5,] 12 7 0 46

[6,] 11 0 10 89
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In each case described above, the function will also create 3 files in the directory specified

by the path argument summarizing the dataset. Those files can be used within the HSROC-

Summary function to compare the estimates of parameters to their true values. Further help

on this function can be obtained by typing

> help(simdata)

To simulate a dataset for an HSROC model with imperfect reference standards we must

provide the values of each reference test’s sensitivity and specificity. Let’s suppose we want

to generate data for 6 studies with 2 different reference standards where the first reference

test is to be applied over the first 4 studies while the other test will be applied over the

remaining 2 studies.

> REFSTD = list(2, 1:4, 5:6)

> s2 = c(0.6, 0.75)

> c2 = c(0.95, 0.7)

In the example above, sensitivity and specificity of the first reference test are 60% and

95% respectively. Sensitivity and specificity of the second reference test are 75% and 70%

respectively. To get a dataset of 6 studies with 200 individuals within each study assuming

the same between-study parameters as in section 4.1, we run

> simdata(N=6, n=200, sub_rs=REFSTD, se_ref=s2, sp_ref=c2, prev=pi,

+ T=THETA, L=LAMBDA, sd_t=sd_theta, sd_a=sd_alpha, b=beta)

resulting in

$Data
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++ +- -+ --

[1,] 14 14 7 165

[2,] 27 62 13 98

[3,] 15 101 10 74

[4,] 12 75 8 105

[5,] 44 31 40 85

[6,] 25 17 47 111

$❵Within study parameters❵

alpha theta ++ -- prev

[1,] 2.586503 0.2755630 0.8154357 0.9622734 0.15

[2,] 1.288232 -0.1718890 0.7642751 0.7037109 0.25

[3,] 1.688717 -0.9207889 0.9403522 0.4654919 0.10

[4,] 2.990638 -1.1974804 0.9912584 0.6321283 0.12

[5,] 2.973003 -0.7219818 0.9743511 0.8068411 0.22

[6,] 2.176751 0.2464142 0.7712676 0.9347985 0.18

$❵Between study parameters❵

THETA sigma theta LAMBDA sigma alpha beta Overal ++ Overall --

-0.2000000 0.5000000 2.5000000 0.7500000 0.2500000 0.8996607 0.8829387

$❵Reference standard❵

1 2

s2 0.60 0.75

c2 0.95 0.70
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5 Appendix : Likelihood function and prior distribu-

tions for the case when the same imperfect reference

standard is used in all studies

The likelihood function of the observed data across the J studies can be expressed in terms

of the sensitivity and specificity of each test, and the prevalence in the jth study, (P (D =

1|Study = j) = πj), as follows:

L(Θ,Λ, S2, C2, σ
2
α, σ

2
θ , β, πj, αj, θj, j = 1, . . . , J |t1j, t2j, j = 1, . . . , J)

=
J∏

j=1

(πjΦ(−
θj −

αj

2

exp(β
2
)
)S2 + (1− πj)Φ(−

θj +
αj

2

exp(−β

2
)
)(1− C2))

∑
t1jt2j

×(πjΦ(−
θj −

αj

2

exp(β
2
)
)(1− S2) + (1− πj)Φ(−

θj +
αj

2

exp(−β

2
)
)C2)

∑
t1j(1−t2j)

×(πjΦ(
θj −

αj

2

exp(β
2
)
)S2 + (1− πj)Φ(

θj +
αj

2

exp(−β

2
)
)(1− C2))

∑
(1−t1j)t2j

×(πjΦ(
θj −

αj

2

exp(β
2
)
)(1− S2) + (1− πj)Φ(

θj +
αj

2

exp(−β

2
)
)C2)

∑
(1−t1j)(1−t2j),

where all sums are from 1 to J .

The pooled ‘difference in means’ parameter was assumed to have prior density Λ ∼ U(−3, 3).

The log of the ratio between the two standard deviations, β was assumed to follow a U(-0.75,

0.75) distribution. The pooled ‘cut-off’ parameter, Θ was assumed to follow a U(-1.5, 1.5)

distribution. Parameters σα and σθ were assumed to follow U(0,2) distributions. For the πj,

S2 and C2 parameters, we assumed a Beta distribution.
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