
RDieHarder: An R interface to the DieHarder suite of Random

Number Generator Tests

Dirk Eddelbuettel
Debian

edd@debian.org

Robert G. Brown
Physics, Duke University

rgb@phy.duke.edu

Initial Version as of May 2007
Rebuilt on February 20, 2014 using RDieHarder 0.1.3

1 Introduction

Random number generators are critically important for computational statistics. Simulation methods are
becoming ever more common for estimation; Monte Carlo Markov Chain is but one approach. Also, simula-
tion methods such as the Bootstrap have long been used in inference and are becoming a standard part of
a rigorous analysis. As random number generators are at the heart of the simulation-based methods used
throughout statistical computing, ‘good’ random numbers are therefore a crucial aspect of a statistical, or
quantitative, computing environment. However, there are very few tools that allow us to separate ‘good’
from ‘bad’ random number generators.

Based on work that started with the random package (Eddelbuettel, 2007) (which provides functions that
access a non-deterministic random number generator (NDRNG) based on a physical source of randomness),
we wanted to compare the particular NDRNG to the RNGs implemented in GNU R (R Development Core
Team, 2007) itself, as well as to several RNGs from the GNU GSL (Galassi et al., 2007), a general-purpose
scientific computing library. Such a comparison is possible with the DieHarder test suite by Brown (2007)
which extends the DieHard test suite by Marsaglia. From this work, we became interested in making
DieHarder directly accessible from GNU R. The RDieHarder package presented here allows such access.

This paper is organized as follows. Section 2 describes the history and design of the DieHarder suite.
Section 3 describes the RDieHarder package facilities, and section 4 shows some examples. Section 5 discusses
current limitations and possible extensions before section 6 concludes.

2 DieHarder

DieHarder is described at length in Brown (2006). Due to space limitations, this section cannot provide as
much detail and will cover only a few key aspects of the DieHarder suite.

2.1 DieHard

DieHarder reimplements and extends George Marsaglia’s Diehard Battery of Tests of Randomness (Marsaglia,
1996). Due to both its robust performance over a wide variety of RNGs, as well as an ability to discern
numerous RNGs as weak, DieHard has become something close to a ‘gold standard’ for assessing RNGs.

However, there are a number of drawbacks with the existing DieHard test battery code and implementa-
tion. First, Marsaglia undertook a large amount of the original work a number of years ago when computing
resources were, compared to today’s standards, moderately limited. Second, neither the Fortran nor the
(translated) C sources are particularly well documented, or commented. Third, the library design is not

1

http://dirk.eddelbuettel.com
edd@debian.org
http://www.phy.duke.edu/~rgb
rgb@phy.duke.edu

modular in a way that encourages good software engineering. Fourth, and last but not least, no licensing
statement is provided with the sources or on the support website.

This led one of the authors of this paper (rgb) to a multi-year effort of rewriting the existing tests from
DieHard in a) standard C in a modular and extensible format, along with extensive comments, and to b)
relicense it under the common and understood GNU GPL license (that is also used for GSL, R, the Linux
kernel, and numerous other projects) allowing for wider use. Moreover, new tests from NIST were added
(see next subsection) and some genuinely new tests were developed (see below).

2.2 STS

The National Institute of Standards and Technology (NIST) has developed its own test suite, the ’Statistical
Test Suite’ (STS). These tests are focussed on bit-level tests of randomness and bit sequences.

Currently, three tests based on the STS suite are provided by DieHarder: STS Monobit, STS Runs and
STS Block.

2.3 RGB extensions

Three new tests have been developed by rgb. A fourth ’test’ is a timing function: for many contexts, not
only do the mathematical properties of a generator matter, but so does computational cost measured in
computing time that is required for a number of draws.

2.4 Basic methodology

Let us suppose a random number generator can provides a sequence of N uniform draws from the range
[0, 1). As the number of draws increases, the mean of the sum of all these values should, under the null
hypothesis of a proper generator, converge closer and closer to µ = N/2. Each of these N draws forms
one experiment. If N is sufficiently large, then the means of all experiments should be normally distributed
with a standard deviation of σ =

√
N/12.1 Given this asymptotic result, we can, for any given experiment

i ∈ 1, . . . ,M transform the given sum xi of N draws into a probability value pi using the inverse normal
distribution.2

The key insight is that, under the null hypothesis of a perfect generator, these pi values should be uni-
formly distributed. Using our set of M probability values, we can compute one ’meta-test’ of whether we can
reject the null of a perfect generator by rejecting that our M probability values are not uniformly distributed.
One suitable test is for example the non-parametric Kolmogorov-Smirnov (KS)3 statistic. DieHarder uses
the Kuiper4 variant of the KS test which uses the combination D+ + D− of the maximum and minimum
distance to the alternative distribution, instead of using just one of these as in the case of the KS test. This
renders the test more sensitive across the entire test region.

2.5 GSL framework

DieHarder is primarily focussed on tests for RNGs. Re-implementing RNGs in order to supply input to the
tests is therefore not an objective of the library. The GNU Scientific Library (GSL), on the other hand,
provides over 1000 mathematical functions, including a large number of random number generators. Using
the GSL 1.9.0 release, the following generators are defined5:

1This is known as the Irwin-Hall distribution, see http://en.wikipedia.org/wiki/Irwin-Hall_distribution.
2Running print(quantile(pnorm(replicate(M,(sum(runif(N))-N/2)/sqrt(N/12))), seq(0,1,by=0.1))*100, digits=2)

performs a Monte Carlo simulation of M experiments using N uniform deviates to illustrate this. Suitable values are e.g.
N <- 1000; M <- 500.

3C.f. the Wikipedia entry http://www.wikipedia.org/wiki/Kolmogorov-Smirnov_test.
4C.f. the Wikipedia entry http://www.wikipedia.org/wiki/Kuiper%27s_test.
5This is based on the trailing term in each identifier defined in /usr/include/gsl/gsl_rng.h.

2

http://en.wikipedia.org/wiki/Irwin-Hall_distribution
http://www.wikipedia.org/wiki/Kolmogorov-Smirnov_test
http://www.wikipedia.org/wiki/Kuiper%27s_test

borosh13 coveyou cmrg fishman18 fishman20 fishman2x gfsr4 knuthran knuthran2 knuthran2002 lecuyer21

minstd mrg mt19937 mt19937_1999 mt19937_1998 r250 ran0 ran1 ran2 ran3 rand rand48 random128_bsd

random128_glibc2 random128_libc5 random256_bsd random256_glibc2 random256_libc5 random32_bsd

random32_glibc2 random32_libc5 random64_bsd random64_glibc2 random64_libc5 random8_bsd ran-

dom8_glibc2 random8_libc5 random_bsd random_glibc2 random_libc5 randu ranf ranlux ranlux389

ranlxd1 ranlxd2 ranlxs0 ranlxs1 ranlxs2 ranmar slatec taus taus2 taus113 transputer tt800 uni

uni32 vax waterman14 zuf

The GNU GSL, a well-known and readily available library of high quality, therefore provides a natural fit
for DieHarder. All of these generators are available in DieHarder via a standardized interface in which a
generator is selected, parameterized as needed and the called via the external GSL library against which
DieHarder is linked.

Beyond these GSL generators, DieHarder also provides two generators based on the ‘devices’ /dev/random
and /dev/urandom that are commonly available on Unix. They provide non-deterministic random-numbers
based on entropy generated by the operating system. DieHarder also offers a text and a raw file input
generators. Lastly, a new algorithmic generator named ’ca’ that is based on cellular automata has recently
been added as well.

2.6 R random number generators

To assess the quality of the non-deterministic RNG provided in the GNU R add-on package random, bench-
mark comparisons with the generators provided by the R language and environment have been a natural
choice. To this end, one of the authors (edd) ported the R generator code (taken from R 2.4.0) to the
GNU GSL random number generator framework used by DieHarder. This allows a direct comparison of the
random generator with those it complements in R.

It then follows somewhat naturally that the other generators available in DieHarder, as well as the
DieHarder tests, should also be available in R. This provided the motivation for the R package presented
here.

2.7 Source code and building DieHarder

Recent versions of DieHarder use the GNU autotools. On Unix system, the steps required to build and
install DieHarder should only be the familiar steps configure; make; sudo make install.

For Debian, initial packages have been provided and are currently available at http://dirk.eddelbuettel.
com/code/tmp. Within due course, these packages should be uploaded to Debian, and thus become part of
the next Debian (and Ubuntu) releases. DieHarder is also expected to be part of future Fedora Core (and
other RPM-based distribution) releases.

On Windows computers and other systems, manual builds should also be possible given that the source
code is written in standard C.

3 RDieHarder

The RDieHarder package provides one key function: dieharder. It can be called with several arguments.
The first one is the name of the random number generator, and the second one is the name of the test to be
applied. For both options, the textual arguments are matched against internal vectors to obtain a numeric
argument index; alternatively the index could be supplied directly. The remaining arguments (currently)
permit to set the number of samples (i.e. the number of experiments run, and thus the sample size for the
final Kolmogorov-Smirnov test), the random number generator seed and whether or not verbose operation
is desired.

The returned object is of class dieharder, inheriting from the standard class htest common for all
hypothesis tests. The standard print method for htest is used; however not all possible slots are being filled
(as there is for example no choice of alternative hypothesis).

3

http://dirk.eddelbuettel.com/code/tmp
http://dirk.eddelbuettel.com/code/tmp

A custom summary method is provided that also computes the Kolmogorov-Smirnov and Wilcoxon tests
in R and displays a simple stem-and-leaf plot. Lastly, a custom plot method shows both a histogram and
kernel density estimate, as well as the empirical cumulative distribution function.

4 Examples

The possibly simplest usage of RDieHarder is provided in the examples section of the help page. The code dh
<- dieharder; summary(dh); plot(dh) simply calls the dieharder function using the default arguments,
invokes a summary and then calls plot on the object.6

A more interesting example follows below. We select the 2dsphere test for the generators ran0 and
mt19937 with a given seed. The results based on both the Kuiper KS test and the KS test suggest that we
would reject ran0 but not mt19937, which is in accordance with common knowledge about the latter (the
Mersenne Twister) being a decent RNG. It is worth nothing that the Wilcoxon test centered on µ = 0.5
would not reject the null at conventional levels for ran0.

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘ran0' with seed=2, sample of size 100

Test p−values: 0.0099 (Kuiper−K−S), 0.0056 (K−S), 0.3506 (Wilcoxon)

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘mt19937' with seed=2, sample of size 100

Test p−values: 0.2449 (Kuiper−K−S), 0.199 (K−S), 0.1696 (Wilcoxon)

Figure 1: Comparison of ran0 and mt19937 under test 2dsphere

A programmatic example follows. We define a short character vector containing the names of the six R
RNGs, apply the DieHarder function to each of these, and then visualize the resulting p-values in simple
qqplot.

All six generators provide p-value plots that are close to the ideal theoretical outcome (shown in gray).
Unsurprisingly, p-values for the Kuiper KS test also show no support for rejecting these generators.

5 Current Limitations and Future Research

The implementation of RDieHarder presented here leaves a number of avenues for future improvement and
research. Some of these pertain to DieHarder itself – adding new, more sophisticated, more systematic tests
including those from the STS suite and tests that probe bitlevel randomness in unique new ways. Others
pertain more to the integration of DieHarder with R, which is the topic of this work.

6We omit the output here due to space constraints.

4

> rngs <- c("R_wichmann_hill", "R_marsaglia_multic",

+ "R_super_duper", "R_mersenne_twister",

+ "R_knuth_taocp", "R_knuth_taocp2")

> if (!exists("rl")) rl <- lapply(rngs, function(rng) dieharder(rng, "diehard_runs", seed=12345))

> oldpar <- par(mfrow=c(2,3), mar=c(2,3,3,1))

> invisible(lapply(rl, function(res) {

+ qqplot(res$data, seq(0, 1, length.out=length(res$data)),

+ main=paste(res$generator, ":", round(res$p.value, digits=3)),

+ ylab="", type="S")

+ abline(0, 1, col='gray')

+ }))

> par(oldpar) # reset graph defaults

>

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R_wichmann_hill : 0

res$data

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R_marsaglia_multic. : 0

res$data

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R_super_duper : 0

res$data

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R_mersenne_twister : 0

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R_knuth_taocp : 0

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R_knuth_taocp2 : 0

Figure 2: Comparing six GNU R generators under the runs test

5

Not all of DieHarder’s features are yet supported in this initial port. In the near future we expect to add
code to deal with tests that support extra parameters, or that return more than one p-value per instance
of a test. Ultimately, RDieHarder should support the full set of options of the the command-line version of
DieHarder.

There is no direct interface from the R generators to the RDieHarder module for evaluation; rather,
the ’ported’ R generators are called from the libdieharder library. This could introduce coding/porting
errors, and also prevents the direct use of user-added generators that R supports. It would be worthwhile
to overcome this by directly letting RDieHarder call back into R to generate draws. On the other hand, the
current setup corresponds more closely to the command-line version of DieHarder.

Next, the R generators in DieHarder may need to be updated to the 2.5.0 code. The GSL RNGs provided
by libdieharder may as well be exported to R via RDieHarder given that the GSL library is already linked
in. Indeed, it would be worthwhile to integrate the two projects and both avoid needless code duplication
and ensure even more eyes checking both the quality and accuracy of the code in both.

It could be useful to also build RDieHarder with an ‘embedded’ libdieharder rather than relying on
an externally installed libdieharder. This may make it easier to build RDieHarder for systems without
libdieharder (and on Windows). Likewise, it is possible to reorganize the DieHarder front-end code into a
common library to avoid duplication of code with RDieHarder.

Lastly, on the statistical side, an empirical analysis of size/power between KS, Wilcoxon and other
alternatives for generating a final p-value from the vector of p-values returned from DieHarder tests suggests
itself. Similarly, empirical comparisons between the resolving power of the various tests (some of which
may not actually be terribly useful in the sense that they yield new information about the failure modes of
any given RNG) could be undertaken. Lastly, there is always room for new generators, new tests, and new
visualizations.

One thing that one should remember while experimenting with DieHarder is that there really is no such
thing as a random number generator. It is therefore likely that all RNGs will fail any given (valid) test if one
cranks up the “resolution” up high enough by accumulating enough samples per p-value, enough p-values per
run.

It is also true that a number of Marsaglia’s tests have target distributions that were computed empirically
by simulation (with the best RNGs and computers available at the time). Here one has to similarly remember
that one can do in a few hours of work what it would have taken him months if not years of simulation to equal
back when the target statistics were evaluated. It is by no means unlikely that a “problem” that DieHarder
eventually resolves is not not the quality of the RNG but rather the accuracy of the target statistics.

These are some of the things that are a matter for future research to decide. A major motivation for
writing DieHarder and making it open source, and integrating it with R, is to facilitate precisely this sort
of research in an easy to use, consistent testing framework. We welcome the critical eyes and constructive
suggestions of the statstical community and invite their participation in examining the code and algorithms
used in DieHarder.

6 Conclusion

The RDieHarder package presented here introduces several new features. First, it makes the DieHarder suite
(Brown, 2007) available for interactive use from the GNU R environment. Second, it also exports DieHarder
results directly to R for further analysis and visualization. Third, it adds adds additional RNGs from GNU
R to those from GNU GSL that were already testable in DieHarder. Fourth, it provides a re-distribution of
the DieHarder ‘test engine’ via GNU R.

References

Robert G. Brown. DieHarder: A Gnu public licensed random number tester. Draft paper included as file
manual/dieharder.tex in the dieharder sources. Last version dated 20 Feb 2006., 2006.

6

Robert G. Brown. dieharder: A Random Number Test Suite, 2007. URL http://www.phy.duke.edu/

~rgb/General/dieharder.php. C program archive dieharder, version 2.24.3.

Dirk Eddelbuettel. random: True random numbers using random.org, 2007. URL http://cran.r-project.

org/src/contrib/Descriptions/random.html. R package random, current version 0.1.2.

Mark Galassi, Brian Gough, Gerald Jungman, James Theiler, Jim Davies, Michael Booth, and Fabrice Rossi.
The GNU Scientific Library Reference Manual, 2007. URL http://www.gnu.org/software/gsl. ISBN
0954161734; C program archive gsl, current version 1.9.0.

George Marsaglia. The Marsaglia random number CDROM including the diehard battery of tests of ran-
domness. Also at http://stat.fsu.edu/pub/diehard., 1996.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2007. URL http://www.R-project.org. ISBN 3-900051-07-0.

7

http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://cran.r-project.org/src/contrib/Descriptions/random.html
http://cran.r-project.org/src/contrib/Descriptions/random.html
http://www.gnu.org/software/gsl
http://stat.fsu.edu/pub/diehard
http://www.R-project.org

	Introduction
	DieHarder
	DieHard
	STS
	RGB extensions
	Basic methodology
	GSL framework
	R random number generators
	Source code and building DieHarder

	RDieHarder
	Examples
	Current Limitations and Future Research
	Conclusion

