
RcppCNPy: Reading and writing NumPy binary files

Dirk Eddelbuettel Wush Wu

RcppCNPy version 0.2.6 as of September 25, 2016

Abstract

This document introduces the RcppCNPy package for read-
ing and writing files created by or for the NumPy module
for Python.

Motivation

Python1 is a widely-used and popular programming lan-
guage. It is deployed in use cases ranging from simple
scripting to larger-scale application development. Python
is also popular for quantitative and scientific application
due to the existence of extension modules such as NumPy2

(which is shorthand for Numeric Python) and many other
packages for data analysis.

NumPy is used to efficiently represent N -dimensional
arrays, and provides an efficient binary storage model
for these files. In practice, N is often equal to two, and
matrices processed or generated in Python can be stored
in this form. As NumPy is popular, many project utilize
this file format.

R has no dedicated reading or writing functionality for
these type of files. However, Carl Rogers has provided a
small Cpp library called cnpy3 which is released under the
MIT license. Using the ‘Rcpp modules’ feature in Rcpp
(Eddelbuettel and François, 2011; Eddelbuettel, 2013; Ed-
delbuettel et al., 2016), we provide (some) features of this
library to R.

Examples

Data creation in Python

The first code example simply creates two files in Python:
a two-dimensional rectangular array as well as a vector.

1http://www.python.org
2http://numpy.scipy.org/
3https://github.com/rogersce/cnpy

>>> import numpy as np
>>>

>>> mat = np.arange(12).reshape(3,4) * 1.1

>>> mat

array([[0. , 1.1, 2.2, 3.3],

[4.4, 5.5, 6.6, 7.7],

[8.8, 9.9, 11. , 12.1]])

>>> np.save("fmat.npy", mat)

>>>

>>> vec = np.arange(5) * 1.1

>>> vec

array([0. , 1.1, 2.2, 3.3, 4.4])

>>> np.save("fvec.npy", vec)

>>>

As illustrated, Python uses the Fortran convention for
storing matrices and higher-dimensional arrays: a matrix
constructed from a single sequence has its first consecutive
elements in its first row—whereas R, following the C con-
vention, has these first few values in its first column. This
shows that to go back and forth we need to transpose these
matrices (which represented internally as two-dimensional
arrays).

Data reading in R

We can read the same data in R using the npyLoad() func-
tion provided by the RcppCNPy package:
Saving Numeric Vector

> library(RcppCNPy)

> mat <- npyLoad("fmat.npy")

> mat

[,1] [,2] [,3] [,4]

[1,] 0.0 1.1 2.2 3.3

[2,] 4.4 5.5 6.6 7.7

[3,] 8.8 9.9 11.0 12.1

> vec <- npyLoad("fvec.npy")

> vec

[1] 0.0 1.1 2.2 3.3 4.4

The Fortran-order of the matrix is preserved; we obtain
the exact same data as we stored.

Reading compressed data in R

A useful extension to the cnpy library is the support of
gzip-compressed data.

> mat2 <- npyLoad("fmat.npy.gz")

1

Support for writing compressed files has been added in
version 0.2.0.

Data writing in R

Matrices and vectors can be written to files using the
npySave() function.

> set.seed(42)

> m <- matrix(sort(rnorm(6)), 3, 2)

> m

[,1] [,2]

[1,] -0.5646982 0.4042683

[2,] -0.1061245 0.6328626

[3,] 0.3631284 1.3709584

> npySave("randmat.npy", m)

> v <- seq(10, 12)

> v

[1] 10 11 12

> npySave("simplevec.npy", v)

Data reading in Python

Reading the data back in Python is also straightforward as
shown in the following example:

>>> m = np.load("randmat.npy")

>>> m

array([[-0.56469817, 0.40426832],

[-0.10612452, 0.6328626],

[0.36312841, 1.37095845]])

>>>

>>> v = np.load("simplevec.npy")

>>> v

array([10., 11., 12.])

>>>

Integer support

Support for integer data types has been conditional on use
of either the -std=c++0x or the -std=c++11 compiler
extensions. Only these standards support the long long

int type needed to represent int64 data on a 32-bit OS.
Following the release of R 3.1.0, it has been enabled by
default in RcppCNPy (whereas it previously required a
manual rebuild), and following the release of R 3.3.0 with
its updated Windows toolchain, C++11 is now available
on all common R platforms. Consequently, support for
large integers in RcppCNPy is no longer just a compile-
time option for some platforms, but generally available on
all (current) R installations.

Performance

The R script timing in the demo/ directory of the pack-
age RcppCNPy provides a simple benchmark. Given two
values n and k, a matrix of size n × k is created with n
rows and k columns. It is written to temporary files in i)
ascii format using write.table(); ii) NumPy format using

Access method Time in sec. Relative to best

npyLoad(pyfile) 0.074 1.000
npyLoad(pygzfile) 0.190 2.568
read.table(txtfile) 4.189 56.608

Table 1: Performance comparison of data reads using a
matrix of size 105 × 50. File size are 39.7mb for ascii,
40.0mb for npy and 10.8mb for npy.gz. Ten replications
were performed, and total times are shown. R 3.3.1 was
used on a laptop with an SSD disk.

npySave(); and iii) NumPy format using npySave() with
compression via the zlib library (used also by gzip).

Table 1 shows some timing comparisons for a matrix
with five million elements. Reading the npy data is clearly
fastest as it required only parsing of the header, followed
by a single large binary read (and the transpose required
to translate the representation used by R). The compressed
file requires only one-fourth of the disk space, but takes ap-
proximately 2.5 times as long to read as the binary stream
has be transformed. Lastly, the default ascii reading mode
is clearly by far the slowest.

Limitations

Higher-dimensional arrays

Rcpp supports three-dimensional arrays, this could be sup-
port in RcppCNPy as well.

npz files

The cnpy library supports reading and writing of sets of
arrays; this feature could also be exported.

Summary

The RcppCNPy package provides simple reading and writ-
ing of NumPy files, using the cnpy library. Reading of
compressed files is also supported as an extension, offer-
ing more compact storage at the cost of slightly longer
read times.

References

Dirk Eddelbuettel. Seamless R and C++ Integration with
Rcpp. Use R! Springer, New York, 2013. ISBN 978-1-
4614-6867-7.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless
R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL http://www.jstatsoft.org/

v40/i08/.

Dirk Eddelbuettel, Romain François, JJ Allaire, Kevin
Ushey, Qiang Kou, John Chambers, and Douglas Bates.
Rcpp: Seamless R and C++ Integration, 2016. URL http:
//CRAN.R-Project.org/package=Rcpp. R package
version 0.12.7.

2

