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1 Introduction

The R package SimCorMultRes is suitable for simulation of correlated multinomial responses (with three
or more nominal or ordinal response categories) and of correlated binary responses conditional on a model
specification for the marginal probabilities. The simulation methods employed herein are extending existing
threshold approaches that give rise to regression models for independent binary, nominal or ordinal responses.
This vignette describes briefly the methods presented in Touloumis (2016) and offers simple examples that
illustrate the use of SimCorMultRes. Additional examples can be found in Touloumis (2016).

2 Notation

Let Yit be the binary or multinomial response for subject i (i = 1, . . . , N) at the measurement occasion t
(t = 1, . . . , T ), and let xit be the associated covariates vector. Note that we assume Yit ∈ {0, 1} for binary
responses and Yit ∈ {1, 2, . . . , J ≥ 3} for multinomial responses.

3 Correlated Nominal Responses

The function rmult.bcl() simulates correlated nominal responses under the marginal baseline-category logit
model

log

[
Pr(Yit = j|xit)

Pr(Yit = J |xit)

]
= (βtj0 − βtJ0) + (βtj − βtJ)′xit = β∗tj0 + β∗′tjxit, (1)

where βtj0 is the j-th category-specific intercept at the t-th measurement occasion and βtj is the j-th
category-specific parameter vector at the t-th measurement occasion. The popular identifiability constraints
βtJ0 = 0 and βtJ = 0 for all t imply that β∗tj0 = βtj0 and β∗tj = βtj for all j = 1, . . . , J − 1.

Define
UNO
itj = βtj0 + β′tjxit + eNO

itj ,

where the random variables {eNO
itj } satisfy the following conditions:

1. Marginally, eNO
itj follows a standard extreme value distribution for all i, t and j.

2. Random variables associated with different subjects are independent, i.e., eNO
i1t1j1

and eNO
i2t2j2

are inde-
pendent provided that i1 6= i2.

3. Category-specific random variables for each subject at a given measurement occasion are independent
(assumption of choice independence), i.e., eNO

itj1
and eNO

itj2
are independent provided that j1 6= j2.

4. Subject-specific random variables measured at different occasions may be correlated, i.e., eNO
it1j1

and

eNO
it2j2

may be correlated provided that t1 6= t2.

It can be shown (Touloumis, 2016) that using the threshold

Yit = j ⇔ UNO
itj = max{UNO

it1 , . . . , UNO
itJ }
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correlated nominal responses that satisfy the marginal baseline-category logit model (1) are generated.
For example, suppose that we want to simulate nominal responses from the marginal baseline-category

logit model

log

[
Pr(Yit = j|xit)

Pr(Yit = 4|xit)

]
= βj0 + βj1xi1 + βj2xit2

where N = 500, T = 3, (β10, β11, β12, β20, β21, β22, β30, β31, β32) = (1, 2, 1.5, 3, 4, 3.5, 5, 6, 5.5) and xit =

(xi1, xit2)′ for all i and t, with xi1
iid∼ N(0, 1) and xit2

iid∼ N(0, 1). For simplicity, assume that {eitj} are
independent random variables. The following R code is used to simulate nominal responses under this
sampling scheme

> library(SimCorMultRes)

> set.seed(1)

> ncategories <- 4

> N <- 500

> clsize <- 3

> betas <- c(1, 2, 1.5, 3, 4, 3.5, 5, 6, 5.5, 0, 0, 0)

> x1 <- rep(rnorm(N), each = clsize)

> x2 <- rnorm(N * clsize)

> xdata <- data.frame(x1, x2)

> cor.matrix <- diag(1, 12)

> CorNorRes <- rmult.bcl(clsize = clsize, ncategories = ncategories, betas = betas,

+ xformula = ~x1 + x2, xdata = xdata, cor.matrix = cor.matrix)

The simulated clustered nominal responses for the first six subjects are

> head(CorNorRes$Ysim)

[,1] [,2] [,3]

[1,] 3 2 4

[2,] 3 3 3

[3,] 1 4 3

[4,] 3 3 3

[5,] 4 3 3

[6,] 3 4 3

The same task without utilizing the NORTA method:

> library(evd)

> rlatent <- rmvevd(n = N, dep = 1, model = "log", d = clsize * ncategories)

> CorNorRes <- rmult.bcl(clsize = clsize, ncategories = ncategories, betas = betas,

+ xformula = ~x1 + x2, xdata = xdata, rlatent = rlatent)

> head(CorNorRes$Ysim)

[,1] [,2] [,3]

[1,] 2 4 4

[2,] 3 3 3

[3,] 4 4 3

[4,] 3 3 3

[5,] 3 3 2

[6,] 2 3 3

4 Correlated Ordinal Responses

Generation of correlated ordinal responses is feasible under either a marginal cumulative link model or a
marginal continuation-ratio model.
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4.1 Marginal cumulative link model

The function rmult.clm() simulates correlated ordinal responses under the marginal cumulative link model

Pr(Yit ≤ j|xit) = F (βtj0 + β′txit) (2)

where F is a cumulative distribution function (cdf), βtj0 is the j-th category-specific intercept at the t-th
measurement occasion and βt is the regression parameter vector at the t-th measurement occasion. The
category-specific intercepts at each measurement occasion are assumed to be monotone increasing, that is

−∞ = βt00 < βt10 < βt20 < · · · < βt(J−1)0 < βtJ0 =∞

for all t.
Define

UO1
it = −β′txit + eO1

it ,

where the random variables {eO1
it } satisfy the following conditions:

1. Marginally, eO1
it follows the distribution specified by F for all i and t.

2. Random variables associated with different subjects are independent, i.e., eO1
i1t1

and eO1
i2t2

are independent
provided that i1 6= i2.

3. Subject-specific random variables measured at different occasions may be correlated, i.e., eO1
it1

and eO1
it2

may be correlated provided that t1 6= t2.

It can be shown (Touloumis, 2016) that using the threshold

Yit = j ⇔ βt(j−1)0 < UO1
it ≤ βtj0

correlated ordinal responses that satisfy the marginal cumulative link model (2) are generated.
For example, suppose that we want to simulate correlated ordinal responses from the marginal cumulative

probit model
Pr(Yit ≤ j|xit) = Φ(βj0 + βt1xi)

with N = 500, T = 4, (β10, β20, β30, β40) = (−1.5,−0.5, 0.5, 1.5), (β11, β21, β31, β41) = (1, 2, 3, 4), xit = xi
iid∼

N(0, 1) for all i and t, and a latent correlation matrix equal to
1.00 0.85 0.50 0.15
0.85 1.00 0.85 0.50
0.50 0.15 1.00 0.85
0.15 0.85 0.50 1.00

 .

Here Φ denotes the cumulative distribution function of the standard normal distribution. The following R
code generates the clustered ordinal responses under this configuration

> set.seed(12345)

> N <- 500

> clsize <- 4

> intercepts <- c(-1.5, -0.5, 0.5, 1.5)

> betas <- matrix(c(1, 2, 3, 4), 4, 1)

> x <- rep(rnorm(N), each = clsize)

> cor.matrix <- toeplitz(c(1, 0.85, 0.5, 0.15))

> CorOrdRes <- rmult.clm(clsize = clsize, intercepts = intercepts, betas = betas,

+ xformula = ~x, cor.matrix = cor.matrix, link = "probit")

The simulated clustered ordinal responses for the first six subjects are

> head(CorOrdRes$Ysim)
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[,1] [,2] [,3] [,4]

[1,] 1 2 2 1

[2,] 1 1 1 1

[3,] 4 3 3 3

[4,] 3 3 4 5

[5,] 5 4 2 1

[6,] 5 5 5 5

4.2 Marginal continuation-ratio model

The function rmult.crm() simulates correlated ordinal responses under the marginal continuation-ratio
model

Pr(Yit = j|Yit ≥ j,xit) = F (βtj0 + β
′

txit) (3)

where βtj0 is the j-th category-specific intercept at the t-th measurement occasion, βt is the regression
parameter vector at the t-th measurement occasion and F is a cdf.

Define
UO2
itj = −β′txit + eO2

itj ,

where the random variables {eO2
itj } satisfy the following conditions:

1. Marginally, eO2
itj follows the distribution specified by F for all i, t and j.

2. Random variables associated with different subjects are independent, i.e., eO2
i1t1j1

and eO2
i2t2j2

are inde-
pendent provided that i1 6= i2.

3. Category-specific random variables for each subject at a given measurement occasion are independent,
i.e., eO2

itj1
and eO2

itj2
are independent provided that j1 6= j2 (local independence assumption).

4. Subject-specific random variables measured at different occasions may be correlated, i.e., eO2
it1j1

and

eO2
it2j2

may be correlated provided that t1 6= t2.

It can be shown (Touloumis, 2016) that using the threshold

Yit = j, given Yit ≥ j ⇔ UO2
itj ≤ βtj0

correlated ordinal responses that satisfy the marginal continuation-ratio model (3) are generated.
Suppose we want to simulate ordinal multinomial responses under the marginal continuation-ratio probit

model
Pr(Yit = j|Yit ≥ j,xit) = Φ(βj0 + βxit)

with N = 500, T = 4, (β10, β20, β30, β40, β) = (−1.5,−0.5, 0.5, 1.5, 1) and xit = xit
iid∼ N(0, 1) for all i and

t. To simplify matters further, suppose that {eitj} are independent. The following R code generates the
clustered ordinal responses under this configuration

> set.seed(1)

> N <- 500

> clsize <- 4

> intercepts <- c(-1.5, -0.5, 0.5, 1.5)

> cor.matrix <- diag(1, 16)

> x <- rnorm(N * clsize)

> CorOrdRes <- rmult.crm(clsize = clsize, intercepts = intercepts, betas = 1,

+ xformula = ~x, cor.matrix = cor.matrix, link = "probit")

>

The simulated clustered ordinal responses for the first six subjects are

> head(CorOrdRes$Ysim)
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[,1] [,2] [,3] [,4]

[1,] 2 3 3 2

[2,] 1 4 1 1

[3,] 2 2 1 1

[4,] 3 5 2 2

[5,] 2 1 3 1

[6,] 3 3 2 5

5 Correlated Binary Responses

The function rbin() simulates correlated binary responses under the marginal model specification

Pr(Yit = 1|xit) = F (βt0 + β′txit) (4)

where βt0 is the intercept at measurement occasion t, βt is the parameter vector at measurement occasion t
and F is a cdf.

Define
UB
it = β′txit + eBit ,

where the random variables {eBit} satisfy the following conditions:

1. Marginally, eBit follows the distribution specified by F for all i and t.

2. Random variables associated with different subjects are independent, i.e., eBi1t1 and eBi2t2 are independent
provided that i1 6= i2.

3. Subject-specific random variables may be correlated, i.e., eBit1 and eBit2 may be correlated provided that
t1 6= t2.

It can be shown that using the threshold

Yit = 1⇔ UB
it ≤ βt0 + 2β′txit

correlated binary responses that satisfy the marginal model (4) are generated.
Suppose that the goal is to simulate correlated binary responses from the marginal probit model

Pr(Yit = 1|xit) = Φ(0.2xi) (5)

where N = 5000, T = 4, xit = xi
iid∼ N(0, 1) for all i and t, and latent correlation matrix

1.00 0.90 0.90 0.90
0.90 1.00 0.90 0.90
0.90 0.90 1.00 0.90
0.90 0.90 0.90 1.00

 .

The following R code generates the clustered binary responses under this configuration

> set.seed(123)

> N <- 5000

> clsize <- 4

> intercepts <- 0

> betas <- 0.2

> cor.matrix <- toeplitz(c(1, 0.9, 0.9, 0.9))

> x <- rep(rnorm(N), each = clsize)

> CorBinRes <- rbin(clsize = clsize, intercepts = intercepts, betas = betas,

+ xformula = ~x, cor.matrix = cor.matrix, link = "probit")
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To verify that the simulated clustered binary responses satisfy the marginal model (5), a binary GEE model
can be fitted

> library(gee)

> binGEEmod <- gee(y ~ x, family = binomial("probit"), id = id, data = CorBinRes$simdata)

(Intercept) x

0.002636705 0.204827031

> summary(binGEEmod)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Probit

Variance to Mean Relation: Binomial

Correlation Structure: Independent

Call:

gee(formula = y ~ x, id = id, data = CorBinRes$simdata, family = binomial("probit"))

Summary of Residuals:

Min 1Q Median 3Q Max

-0.7571225 -0.4867496 0.2562934 0.4865769 0.7325948

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 0.002636705 0.008929290 0.2952872 0.01572132 0.1677153

x 0.204827031 0.009114596 22.4724192 0.01610695 12.7166857

Estimated Scale Parameter: 1.000165

Number of Iterations: 1

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

Now consider the same set-up as in marginal model (5) but with a logistic cdf. Here is one way to achieve
simulation of correlated binary responses under this configuration without employing the NORTA method:

> set.seed(123)

> library(evd)

> rlatent1 <- rmvevd(N, dep = sqrt(1 - 0.9), model = "log", d = clsize)

> rlatent2 <- rmvevd(N, dep = sqrt(1 - 0.9), model = "log", d = clsize)

> rlatent <- rlatent1 - rlatent2

> CorBinRes <- rbin(clsize = clsize, intercepts = intercepts, betas = betas,

+ xformula = ~x, rlatent = rlatent)

> binGEEmod <- gee(y ~ x, family = binomial("logit"), id = id, data = CorBinRes$simdata)

(Intercept) x

0.002196042 0.261082668
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> summary(binGEEmod)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Independent

Call:

gee(formula = y ~ x, id = id, data = CorBinRes$simdata, family = binomial("logit"))

Summary of Residuals:

Min 1Q Median 3Q Max

-0.6999249 -0.4918525 0.2916543 0.4912009 0.6830804

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 0.002196042 0.01425978 0.1540024 0.02510421 0.08747701

x 0.261082668 0.01457592 17.9119179 0.02551444 10.23274335

Estimated Scale Parameter: 1.000124

Number of Iterations: 1

Working Correlation

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

6 How to Cite

> citation("SimCorMultRes")

To cite the R package 'SimCorMultRes' in publications, please use:

Touloumis, A. (2016) Simulating Correlated Binary and Multinomial

Responses under Marginal Model Specification: The SimCorMultRes

Package, The R Journal (forthcoming).

A BibTeX entry for LaTeX users is

@Article{,

title = {Simulating Correlated Binary and Multinomial

Responses under Marginal Model Specification:

The SimCorMultRes Package},

author = {{Anestis Touloumis}},

year = {2016},

journal = {The R Journal (forthcoming)},

}
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