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Abstract

The brms package allows R users to easily specify a wide range of Bayesian multilevel
models, which are fitted with the probabilistic programming language Stan behind the
scenes. A wide range of response distributions are supported in combination with an in-
tuitive and powerful multilevel formula syntax. Non-linear relationships may be specified
using non-linear predictor terms or smooth functions. Additionally, all parameters of the
response distribution can be predicted at the same time allowing for distributional regres-
sion. Model fit can be investigated and compared using leave-one-out cross-validation and
graphical posterior-predictive checks. Many more post-processing and plotting methods
are implemented.
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1. Introduction

Multilevel models (MLMs) offer great flexibility for researchers across sciences (Brown and
Prescott 2015; Demidenko 2013; Gelman and Hill 2006; Pinheiro and Bates 2006). They allow
modeling of data measured on different levels at the same time – for instance data of students
nested within classes and schools – thus taking complex dependency structures into account.
It is not surprising that many packages for R (R Core Team 2015) have been developed to
fit MLMs. Usually, however, the functionality of these implementations is limited insofar as
it is only possible to predict the mean of the response distribution. Other parameters of the
response distribution, such as the residual standard deviation in linear models, are assumed
constant across observations, which may be violated in many applications. Accordingly, it
is desirable to allow for prediction of all response parameters at the same time. Models
doing exactly that are often referred to as distributional models or more verbosely models
for location, scale and shape (Rigby and Stasinopoulos 2005). Another limitation of basic
MLMs is that they only allow for linear predictor terms. While linear predictor terms already
offer good flexibility, they are of limited use when relationships are inherently non-linear.
Such non-linearity can be handled in at least two ways: (1) by fully specifying a non-linear
predictor term with corresponding parameters each of which can be predicted using MLMs
(Lindstrom and Bates 1990), or (2) estimating the form of the non-linear relationship on the
fly using smooth terms (Wood 2004). The former are often simply called non-linear models,
while the latter are referred to as generalized additive models (GAMs; Hastie and Tibshirani,
1990).
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Combining all of these modeling options into one framework is a complex task, both concep-
tually and with regard to model fitting. Maximum likelihood methods, which are typically
applied in classical ’frequentist’ statistics, can reach their limits at some point and fully
Bayesian methods become the go-to solutions to fit such complex models (Gelman, Carlin,
Stern, and Rubin 2014). In addition to being more flexible, the Bayesian framework comes
with other advantages, for instance, the ability to derive probability statements for every
quantity of interest or explicitly incorporating prior knowledge about parameters into the
model.

Possibly the most powerful program for performing full Bayesian inference available to date
is Stan (Stan Development Team 2017b; Carpenter, Gelman, Hoffman, Lee, Goodrich, Be-
tancourt, Brubaker, Guo, Li, and Ridell 2017). It implements Hamiltonian Monte Carlo
(Duane, Kennedy, Pendleton, and Roweth 1987; Neal 2011; Betancourt, Byrne, Livingstone,
and Girolami 2014) and its extension, the No-U-Turn (NUTS) Sampler (Hoffman and Gel-
man 2014). These algorithms converge much more quickly than other Markov-Chain Monte-
Carlo (MCMC) algorithms especially for high-dimensional models (Hoffman and Gelman
2014; Betancourt et al. 2014; Betancourt 2017). An excellent non-mathematical introduction
to Hamiltonian Monte Carlo can be found in Betancourt (2017).

Stan comes with its own programming language, allowing for great modeling flexibility (cf.,
Stan Development Team 2017b; Carpenter et al. 2017). Many researchers may still be hes-
itent to use Stan directly, as every model has to be written, debugged and possibly also
optimized. This may be a time-consuming and error-prone process even for researchers famil-
iar with Bayesian inference. The brms package Bürkner (in press), presented in this paper,
aims to remove these hurdles for a wide range of regression models by allowing the user to
benefit from the merits of Stan by using extended lme4-like (Bates, Mächler, Bolker, and
Walker 2015) formula syntax, with which many R users are familiar with. It offers much more
than writing efficient and human-readable Stan code: brms comes with many post-processing
and visualization functions, for instance to perform posterior predictive checks, leave-one-out
cross-validation, visualization of estimated effects, and prediction of new data. The overar-
ching aim is to have one general framework for regression modeling, which offers everything
required to successfully apply regression models to complex data. To date, it already fully re-
places and extends the functionality of dozens of other R packages, each of which is restricted
to specific regression models.

The purpose of the present article is to provide an introduction of the advanced multilevel
formula syntax implemented in brms, which allows you to fit a wide and growing range of
non-linear distributional multilevel models. A general overview of the package is already given
in Bürkner (in press). Accordingly, the present article focuses on more recent developments.
We begin by explaining the underlying structure of distributional models. Next, the formula
syntax of lme4 and its extensions implemented in brms are explained. Three examples that
demonstrate the use of the new syntax are discussed in detail. We end by describing future
plans for extending the package. Users more interested in application and less in mathematical
details and notation may want to skip Section 2 and 3.

2. Model description

The core of models implemented in brms is the prediction of the response y through predicting
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all parameters θp of the response distribution D, which is also called the model family in
many R packages. We write

yi ∼ D(θ1i, θ2i, ...)

to stress the dependency on the ith observation. Every parameter θp may be regressed on its
own predictor term ηp transformed by the inverse link function fp that is θpi = fp(ηpi)

1. Such
models are typically refered to as distributional models2. Details about the parameterization
of each family are given in vignette("brms_families").

Suppressing the index p in all quantities for simplicity, a predictor term η can generally be
written as

η = Xβ + Zu+
K∑
k=1

sk(xk)

In this equation, β and u are the coefficients at population-level and group-level respec-
tively and X,Z are the corresponding design matrices. The terms sk(xk) symbolize optional
smoothing terms based on some covariates xk fitted via splines (see Wood (2011) for the
underlying implementation in the mgcv package). The response y as well as X, Z, and xk
make up the data, whereas β, u, and the smooth functions sk are the model parameters being
estimated. The coefficients β and u may be more commonly known as fixed and random
effects, but I avoid theses terms following the recommendations of Gelman and Hill (2006).
Details about prior distributions of β and u can be found in Bürkner (in press) and under
help("set_prior").

Each family in brms has one primary parameter θ1, which is usually (but not necessarily) the
mean of the distribution. The corresponding predictor term η1 may have any form specifiable
in Stan. We call it a non-linear predictor and write

η1 = f(c1, c2, ..., φ1, φ2, ...)

The structure of the function f is given by the user, cr are known or observed covariates, and
φs are non-linear parameters each having its own linear predictor term ηφs of the form specified
above. In fact, we should think of non-linear parameters as placeholders for linear predictor
terms rather than as parameters themselves. A frequentist implementation of such models,
which inspired the non-linear syntax in brms, can be found in the nlme package (Pinheiro,
Bates, DebRoy, Sarkar, and R Core Team 2016). Theoretically, one could allow non-linear
predictors for all parameters of D, but this would complicate the current implementation and
might be unnecessary for the vast majority of research questions.

3. Extended multilevel formula syntax

The formula syntax applied in brms builds upon the syntax of the R package lme4 (Bates
et al. 2015). First, we will briefly explain the lme4 syntax used to specify multilevel models
and then introduce certain extensions that allow to specify much more complicated models
in brms. An lme4 formula has the general form

response ~ pterms + (gterms | group)

1A parameter can also be assumed constant across observations so that a linear predictor is not requireed.
2The models described in Bürkner (in press) are a sub-class of the here described models.
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The pterms part contains the population-level effects that are assumed to be the same across
obervations. The gterms part contains so called group-level effects that are assumed to vary
accross grouping variables specified in group. Multiple grouping factors each with multiple
group-level effects are possible. Usually, group contains only a single variable name pointing
to a factor, but you may also use g1:g2 or g1/g2, if both g1 and g2 are suitable grouping
factors. The : operator creates a new grouping factor that consists of the combined levels
of g1 and g2 (you could think of this as pasting the levels of both factors together). The /

operator indicates nested grouping structures and expands one grouping factor into two or
more when using multiple / within one term. If, for instance, you write (1 | g1/g2), it will
be expanded to (1 | g1) + (1 | g1:g2). Instead of | you may use || in grouping terms to
prevent group-level correlations from being modeled. This may be useful in particular when
modeling so many group-level effects that convergence of the fitting algorithms becomes an
issue due to model complexity. One limitation of the || operator in lme4 is that it only
splits up terms so that columns of the design matrix originating from the same term are still
modeled as correlated (e.g., when coding a categorical predictor; see the mixed function of
the afex package by Singmann, Bolker, and Westfall (2015) for a way to avoid this behavior).

While intuitive and visually appealing, the classic lme4 syntax is not flexible enough to allow
for specifying the more complex models supported by brms. In non-linear or distributional
models, for instance, multiple parameters are predicted, each having their own population and
group-level effects. Hence, multiple formulas are necessary to specify such models3. Then,
however, specifying group-level effects of the same grouping factor to be correlated across
formulas becomes complicated. The solution implemented in brms (and currently unique to
it) is to expand the | operator into |<ID>|, where <ID> can be any value. Group-level terms
with the same ID will then be modeled as correlated if they share same grouping factor(s)4.
For instance, if the terms (x1|ID|g1) and (x2|ID|g1) appear somewhere in the formulas
passed to brms, they will be modeled as correlated.

Further extensions of the classical lme4 syntax refer to the group part. It is rather limited
in its flexibility since only variable names combined by : or / are supported. We propose
two extensions of this syntax: Firstly, group can generally be split up in its terms so that,
say, (1 | g1 + g2) is expanded to (1 | g1) + (1 | g2). This is fully consistent with the
way / is handled so it provides a natural generalization to the existing syntax. Secondly,
there are some special grouping structures that cannot be expressed by simply combining
grouping variables. For instance, multi-membership models cannot be expressed this way. To
overcome this limitation, we propose wrapping terms in group within special functions that
allow specifying alternative grouping structures: (gterms | fun(group)). In brms, there
are currently two such functions implemented, namely gr for the default behavior and mm for
multi-membership terms. To be compatible with the original syntax and to keep formulas
short, gr is automatically added internally if none of these functions is specified.

There are other syntax extensions implemented in brms that do not directly target group-
ing terms. Firstly, there are terms formally included in the pterms part that are handled

3Actually, it is possible to specify multiple model parts within one formula using interactions terms for
instance as implemented in MCMCglmm (Hadfield 2010). However, this syntax is limited in flexibility and
requires a rather deep understanding of the way R parses formulas, thus often being confusing to users.

4It might even be further extended to |fun(<ID>)|, where fun defines the type of correlation structure,
defaulting to unstructured that is estimating the full correlation matrix. The fun argument is not yet supported
by brms but could be supported in the future if other correlation structures, such as compound symmetry or
Toeplitz, turn out to have reasonable practical applications and effective implementations in Stan.
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separately. The most prominent examples are smooth terms specified through the s and t2

functions of the mgcv package (Wood 2011). Other examples are category specific effects
cs, monotonic effects mo, or noise-free effects me. The former is explained in Bürkner (in
press), while the latter two are documented in help(brmsformula). Internally, these terms
are extracted from pterms and not included in the construction of the population-level design
matrix X. Secondly, making use of the fact that | is unused on the left-hand side of ∼ in
formula, additional information on the response variable may be specified via response |

aterms ~ <predictor terms>. The aterms part may contain multiple terms of the form
fun(<variable>) seperated by + each providing special information on the response vari-
able. fun can be replaced with either se, weights, disp, trials, cat, cens, trunc, or
dec. As it is not the main topic of the present paper, we refer to help("brmsformula") and
help("addition-terms") for more details.

4. Examples

In this section, we will discuss three examples in detail. The first is about the number of fish
caught be different groups of people. It does not actually contain any multilevel structure,
but helps in understanding how to set up distributional models. The second example is about
cumulative insurance loss payments across several years, which is fitted using a rather complex
non-linear multilevel model. The third example is about the performance of school children,
who change school during the year, thus requiring a multi-membership model.

Despite not being covered in the three examples, there are a few more modeling options that we
want to briefly describe. First, brms allows fitting so called phylogenetic models. These mod-
els are relevant in evolutionary biology when data of many species are analyzed at the same
time. Species are not independent as they come from the same phylogenetic tree, implying that
different levels of the same grouping-factor (i.e., species) are likely correlated. There is a whole
vignette dedicated to this topic, which can be found via vignette("brms_phylogenetics").
Second, there is a canonical way to handle ordinal predictors, without falsely assuming they
are either categorical or continuous. We call them monotonic effects and discuss them in
vignette("brms_monotonic"). Last but not least, it is possible to account for measurement
error in both response and predictor variables. This is often ignored in applied regression
modeling (Westfall and Yarkoni 2016), although measurement error is very common in all
scientific fields making use of observational data. There is no vignette yet covering this topic,
but one will be added in the future. In the meantime, help("brmsformula") is the best place
to start learning about such models as well as about other details of the brms formula syntax.

4.1. Example 1: Catching fish

An important application of the distributional regression framework of brms are so called
zero-inflated and hurdle models. These models are helpful whenever there are more zeros in
the response variable than one would naturally expect. For example, if you seek to predict
the number of cigarettes people smoke per day and also includes non-smokers, there will be a
huge amount of zeros which, when not modeled appropriately, can seriously distort parameter
estimates. Here, we consider another example dealing with the number of fish caught by
various groups of people. On the UCLA website (http://www.ats.ucla.edu/stat/r/dae/
zipoisson.htm), the data are described as follows: “The state wildlife biologists want to

http://www.ats.ucla.edu/stat/r/dae/zipoisson.htm
http://www.ats.ucla.edu/stat/r/dae/zipoisson.htm
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model how many fish are being caught by fishermen at a state park. Visitors are asked how
long they stayed, how many people were in the group, were there children in the group and
how many fish were caught. Some visitors do not fish, but there is no data on whether a
person fished or not. Some visitors who did fish did not catch any fish so there are excess
zeros in the data because of the people that did not fish.”

R> zinb <- read.csv("http://www.ats.ucla.edu/stat/data/fish.csv")

R> zinb$camper <- factor(zinb$camper, labels = c("no", "yes"))

R> head(zinb)

nofish livebait camper persons child xb zg count

1 1 0 no 1 0 -0.8963146 3.0504048 0

2 0 1 yes 1 0 -0.5583450 1.7461489 0

3 0 1 no 1 0 -0.4017310 0.2799389 0

4 0 1 yes 2 1 -0.9562981 -0.6015257 0

5 0 1 no 1 0 0.4368910 0.5277091 1

6 0 1 yes 4 2 1.3944855 -0.7075348 0

As predictors we choose the number of people per group, the number of children, as well as
whether the group consists of campers. Many groups may not catch any fish just because
they do not try and so we fit a zero-inflated Poisson model. For now, we assume a constant
zero-inflation probability across observations.

R> fit_zinb1 <- brm(count ~ persons + child + camper,

R> data = zinb, family = zero_inflated_poisson())

The model is readily summarized via

R> summary(fit_zinb1)

Family: zero_inflated_poisson (log)

Formula: count ~ persons + child + camper

Data: zinb (Number of observations: 250)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000

WAIC: Not computed

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.01 0.17 -1.34 -0.67 2171 1

persons 0.87 0.04 0.79 0.96 2188 1

child -1.36 0.09 -1.55 -1.18 1790 1

camper 0.80 0.09 0.62 0.98 2950 1

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
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zi 0.41 0.04 0.32 0.49 2409 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

is a crude measure of effective sample size, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

A graphical summary is available through

R> marginal_effects(fit_zinb1)
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Figure 1: Marginal effects plots of the fit_zinb1 model.

(see Figure 1). In fact, the marginal_effects method turned out to be so powerful in
visualizing effects of predictors that I am using it almost as frequently as summary. According
to the parameter estimates, larger groups catch more fish, campers catch more fish than non-
campers, and groups with more children catch less fish. The zero-inflation probability zi

is pretty large with a mean of 41%. Please note that the probability of catching no fish is
actually higher than 41%, but parts of this probability are already modeled by the Poisson
distribution itself (hence the name zero-inflation). If you want to treat all zeros as originating
from a separate process, you can use hurdle models instead (not shown here).

Now, we try to additionally predict the zero-inflation probability by the number of children.
The underlying reasoning is that we expect groups with more children to not even try catch-
ing fish, since children often lack the patience required for fishing. From a purely statistical
perspective, zero-inflated (and hurdle) distributions are a mixture of two processes and pre-
dicting both parts of the model is natural and often very reasonable to make full use of the
data.

R> fit_zinb2 <- brm(bf(count ~ persons + child + camper, zi ~ child),

R> data = zinb, family = zero_inflated_poisson())

To transform the linear predictor of zi into a probability, brms applies the logit-link, which
takes values within [0, 1] and returns values on the real line. Thus, it allows the transition
between probabilities and linear predictors.
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R> summary(fit_zinb2)

Family: zero_inflated_poisson (log)

Formula: count ~ persons + child + camper

zi ~ child

Data: zinb (Number of observations: 250)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000

WAIC: Not computed

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.07 0.18 -1.43 -0.73 2322 1

persons 0.89 0.05 0.80 0.98 2481 1

child -1.17 0.10 -1.37 -1.00 2615 1

camper 0.78 0.10 0.60 0.96 3270 1

zi_Intercept -0.95 0.27 -1.52 -0.48 2341 1

zi_child 1.21 0.28 0.69 1.79 2492 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

is a crude measure of effective sample size, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

According to the model, trying to fish with children not only decreases the overall number fish
caught (as implied by the Poisson part of the model) but also drastically increases your chance
of catching no fish at all (as implied by the zero-inflation part), possibly because groups with
more children spend less time or no time at all fishing. Comparing model fit via leave-one-out
cross validation as implemented in the loo package (Vehtari, Gelman, and Gabry 2016a,b).

R> LOO(fit_zinb1, fit_zinb2)

LOOIC SE

fit_zinb1 1639.52 363.30

fit_zinb2 1621.35 362.39

fit_zinb1 - fit_zinb2 18.16 15.71

reveals that the second model using the number of children to predict both model parts has
better fit. However, when considering the standard error of the LOOIC difference, improvement
in model fit is apparently modest and not substantial. More examples of distributional model
can be found in vignette("brms_distreg").

4.2. Example 2: Insurance loss payments

On his blog, Markus Gesmann predicts the growth of cumulative insurance loss payments
over time, originated from different origin years (see http://www.magesblog.com/2015/11/

loss-developments-via-growth-curves-and.html). We will use a slightly simplified ver-
sion of his model for demonstration purposes here. It looks as follows:

http://www.magesblog.com/2015/11/loss-developments-via-growth-curves-and.html
http://www.magesblog.com/2015/11/loss-developments-via-growth-curves-and.html
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cumAY,dev ∼ N(µAY,dev, σ)

µAY,dev = ultAY

(
1 − exp

(
−
(
dev

θ

)ω))
The cumulative insurance payments cum will grow over time, and we model this dependency
using the variable dev. Further, ultAY is the (to be estimated) ultimate loss of accident each
year. It constitutes a non-linear parameter in our framework along with the parameters θ
and ω, which are responsible for the growth of the cumulative loss and are for now assumed
to be the same across years. We load the data

R> url <- paste0("https://raw.githubusercontent.com/mages/",

R> "diesunddas/master/Data/ClarkTriangle.csv")

R> loss <- read.csv(url)

R> head(loss)

AY dev cum

1 1991 6 357.848

2 1991 18 1124.788

3 1991 30 1735.330

4 1991 42 2182.708

5 1991 54 2745.596

6 1991 66 3319.994

and translate the proposed model into a non-linear brms model.

R> nlform <- bf(cum ~ ult * (1 - exp(-(dev/theta)^omega)),

R> ult ~ 1 + (1|AY), omega ~ 1, theta ~ 1,

R> nl = TRUE)

R> nlprior <- c(prior(normal(5000, 1000), nlpar = "ult"),

R> prior(normal(1, 2), nlpar = "omega"),

R> prior(normal(45, 10), nlpar = "theta"))

R> fit_loss1 <- brm(formula = nlform, data = loss,

R> family = gaussian(), prior = nlprior,

R> control = list(adapt_delta = 0.9))

In the above functions calls, quite a few things are going on. The formulas are wrapped
in bf to combine them into one object. The first formula specifies the non-linear model.
We set argument nl = TRUE so that brms takes this formula literally and instead of using
standard R formula parsing. We specify one additional formula per non-linear parameter
(a) to clarify what variables are covariates and what are parameters and (b) to specify the
predictor term for the parameters. We estimate a group-level effect of accident year (variable
AY) for the ultimate loss ult. This also shows nicely how a non-linear parameter is actually a
placeholder for a linear predictor, which in the case of ult, contains only a varying intercept
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for year. Both omega and theta are assumed to be constant across observations so we just
fit a population-level intercept.

Priors on population-level effects are required and, for the present model, are actually manda-
tory to ensure identifiability. Otherwise, we may observe that different Markov chains converge
to different parameter regions as multiple posterior distribution are equally plausible. In the
control argument we increase adapt_delta to get rid of a few divergent transitions (cf. Stan
Development Team, 2017a; Bürkner, in press). Again the model is summarized via

R> summary(fit_loss1)

Family: gaussian (identity)

Formula: cum ~ ult * (1 - exp(-(dev/theta)^omega))

ult ~ 1 + (1 | AY)

omega ~ 1

theta ~ 1

Data: loss (Number of observations: 55)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000

WAIC: Not computed

Group-Level Effects:

~AY (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sd(ult_Intercept) 745.74 231.31 421.05 1306.04 916 1

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

ult_Intercept 5273.70 292.34 4707.11 5852.28 798 1

omega_Intercept 1.34 0.05 1.24 1.43 2167 1

theta_Intercept 46.07 2.09 42.38 50.57 1896 1

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 139.93 15.52 113.6 175.33 2358 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

is a crude measure of effective sample size, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

as well as

R> marginal_effects(fit_loss1)

(see Figure 2). We can also visualize the cumulative insurance loss over time separately for
each year.
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Figure 2: Marginal effects plots of the fit_loss1 model.

R> conditions <- data.frame(AY = unique(loss$AY))

R> rownames(conditions) <- unique(loss$AY)

R> me_year <- marginal_effects(fit_loss1, conditions = conditions,

R> re_formula = NULL, method = "predict")

R> plot(me_year, ncol = 5, points = TRUE)

(see Figure 3). It is evident that there is some variation in cumulative loss across accident
years, for instance due to natural disasters happening only in certain years. Further, we
see that the uncertainty in the predicted cumulative loss is larger for later years with fewer
available data points.

In the above model, we considered omega and delta to be constant across years, which may
not necessarily be true. We can easily investigate this by fitting varying intercepts for all three
non-linear parameters also estimating group-level correlation using the above introduced ID

syntax.

R> nlform2 <- bf(cum ~ ult * (1 - exp(-(dev/theta)^omega)),

R> ult ~ 1 + (1|ID1|AY),

R> omega ~ 1 + (1|ID1|AY),

R> theta ~ 1 + (1|ID1|AY),

R> nl = TRUE)

R> fit_loss2 <- update(fit_loss1, formula = nlform2,

R> control = list(adapt_delta = 0.90))

We could have also specified all predictor terms more conveniently within one formula as
ult + omega + theta ~ 1 + (1|ID1|AY), because the structure of the predictor terms is
identical. To compare model fit, we perform leave-one-out cross-validation.
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Figure 3: Marginal effects plots of the fit_loss1 model separately for each accident year.

R> LOO(fit_loss1, fit_loss2)

LOOIC SE

fit_loss1 715.44 19.24

fit_loss2 720.60 19.85

fit_loss1 - fit_loss2 -5.15 5.34

Since smaller values indicate better expected out-of-sample predictions and thus better model
fit, the simpler model that only has a varying intercept over parameter ult is preferred. This
may not be overly surprising, given that three varying intercepts as well as three group-level
correlations are probably overkill for data containing only 55 observations. Nevertheless, it
nicely demonstrates how to apply the ID syntax in practice.

With the above models, we achieve good fit to the data thanks to a tailored non-linear
function provided by subject matter experts. Now assume that such a knowledge is not
available. We can try finding a reasonable function trough trial and error, or we can use a
statistical procedure to find a good function for us. The latter approach naturally leads to
fitting smooth terms via splines, which is readily applied to the insurance loss data using
brms. All the complicated stuff related to the data for setting up smooth terms is handled
by mgcv (Wood 2011) on the backend.
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R> fit_loss3 <- brm(cum ~ s(dev) + (1|AY), data = loss,

R> control = list(adapt_delta = 0.90))

As the smooth term itself cannot be modeled as varying by year in a multilevel manner,
we add a basic varying intercept in an effort to account for variation between years. The
usual methods such as summary or marginal_effects can be applied to obtain numerical or
graphical summaries of the model. The predictions of each year are looking a follows.

R> me_year3 <- marginal_effects(fit_loss3, conditions = conditions,

R> re_formula = NULL, method = "predict")

R> plot(me_year3, ncol = 5, points = TRUE)
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Figure 4: Marginal effects plots of the fit_loss3 model separately for each accident year.

(see Figure 4). Again we can compare model fit via leave-one-out cross-validation.

R> LOO(fit_loss1, fit_loss3)

LOOIC SE

fit_loss1 715.44 19.24

fit_loss3 780.03 12.91

fit_loss1 - fit_loss3 -64.58 18.59
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We see that fit_loss3 clearly fits worse than the specifically designed non-linear model
fit_loss1, but the former still performs impressively given that we just fitted a non-linear
function to the data without knowing anything about its form a-priori. More examples of
non-linear models can be found in vignette("brms_nonlinear").

4.3. Example 3: Performance of school children

Suppose that we want to predict the performance of students in the final exams at the end of
the year. There are many variables to consider, but one important factor will clearly be school
membership. Schools might differ in the ratio of teachers and students, the general quality of
teaching, in the cognitive ability of the students they draw, or other factors we are not aware
of that induce dependency among students of the same school. Thus, it is advised to apply a
multilevel modeling techniques including school membership as a group-level term. Of course,
we should account for class membership and other levels of the educational hierarchy as well,
but for the purpose of the present example, we will focus on schools only. Usually, accounting
for school membership is pretty-straight forward by simply adding a varying intercept to the
formula: (1 | school). However, a non-negligible number of students might change schools
during the year. This would result in a situation where one student is a member of multiple
schools and so we need a multi-membership model. Setting up such a model not only requires
information on the different schools students attend during the year, but also the amount of
time spend at each school. The latter can be used to weight the influence each school has
on its students, since more time attending a school will likely result in greater influence. For
now, let us assume that students change schools maximally once a year and spend equal time
at each school. We will later see how to relax these assumptions.

Real educational data are usually relatively large and complex so that we simulate our own
data of 10 schools and 1000 students, with each school having the same expected number of
100 students. We model 10% of students as changing schools.

R> data_mm <- sim_multi_mem(nschools = 10, nstudents = 1000, change = 0.1)

R> head(data_mm)

s1 s2 w1 w2 y

1 8 9 0.5 0.5 16.27422

2 10 9 0.5 0.5 18.71387

3 5 3 0.5 0.5 23.65319

4 3 5 0.5 0.5 22.35204

5 5 3 0.5 0.5 16.38019

6 10 6 0.5 0.5 17.63494

The code of function sim_multi_mem can be found in the online supplement of the present
paper. For reasons of better illustration, students changing schools appear in the first rows
of the data. Data of students being only at a single school looks as follows:

R> data_mm[101:106, ]

s1 s2 w1 w2 y

101 2 2 0.5 0.5 27.247851
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102 9 9 0.5 0.5 24.041427

103 4 4 0.5 0.5 12.575001

104 2 2 0.5 0.5 21.203644

105 4 4 0.5 0.5 12.856166

106 4 4 0.5 0.5 9.740174

Thus, school variables are identical, but we still have to specify both in order to pass the
data appropriately. Incorporating no other predictors into the model for simplicity, a multi-
membership model is specified as

R> fit_mm <- brm(y ~ 1 + (1|mm(s1, s2)), data = data_mm)

The only new syntax element is that multiple grouping factors (s1 and s2) are wrapped in mm.
Everything else remains exactly the same. Note that we did not specify the relative weights
of schools for each student and thus, by default, equal weights are assumed.

R> summary(fit_mm)

Family: gaussian (identity)

Formula: y ~ 1 + (1 | mm(s1, s2))

Data: data_mm (Number of observations: 1000)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000

WAIC: Not computed

Group-Level Effects:

~mms1s2 (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sd(Intercept) 2.76 0.82 1.69 4.74 682 1.01

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 19 0.93 17.06 20.8 610 1

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 3.58 0.08 3.43 3.75 2117 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

is a crude measure of effective sample size, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

One important way to evaluate model fit we did not cover so far in the present paper are graph-
ical posterior-predictive checks Gelman et al. (2014). In brms, a wide variety of posterior-
predictive checks are available using the bayesplot package (Gabry 2016) at the backend,
which is an incredibly powerful tool for visualizing MCMC output5.

5I hope that in the future, many Bayesian R packages (particularly those fitted via Stan) will adopt bayesplot
to align graphical output and ease comparison between results obtained with different packages.
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R> pp_check(fit_mm)

10 20 30

y
yrep

Figure 5: Density overlay plot of the fit_mm1 model.

In Figure 5, the dark blue line represents the density of the observed response, while each light
blue line represents draws from the posterior-predictive distribution, that is the distribution
of the response as predicted by the model. Similar densities of observed and model-implied
responses give a first indication of the appropriateness of the model, although two models with
similar posterior-predictive distribution might perform differently when it comes to actual
prediction of new data. In the present case, we see that densities are highly similar, which
is, however, not overly surprising given that we fitted the exact same model to the data that
was used to generate them. There is a continuously increasing number of posterior-predictive
checks to apply via pp_check, and we recommend looking at help("PPC-overview") for an
overview. To get a sense of bad model fit as detected via posterior-predictive checks, simply
try modeling skewed data (e.g., response or survival times) using a normal model. We would
hope that this display will jar researchers out of using normal distributions when they are not
suitable.

With regard to the assumptions made in the above example, it is unlikely that all children
who change schools stay in both schools equally long. To relax this assumption, we have to
specify weights. First, we amend the simulated data to contain non-equal weights for students
changing schools. For all other students, weighting does of course not matter as they stay in
the same school anyway.

R> data_mm[1:100, "w1"] <- runif(100, 0, 1)

R> data_mm[1:100, "w2"] <- 1 - data_mm[1:100, "w1"]

R> head(data_mm)

s1 s2 w1 w2 y

1 8 9 0.3403258 0.65967423 16.27422

2 10 9 0.1771435 0.82285652 18.71387
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3 5 3 0.9059811 0.09401892 23.65319

4 3 5 0.4432007 0.55679930 22.35204

5 5 3 0.8052026 0.19479738 16.38019

6 10 6 0.5610243 0.43897567 17.63494

Incorporating these weights into the model is straight forward.

R> fit_mm2 <- brm(y ~ 1 + (1|mm(s1, s2, weights = cbind(w1, w2))),

R> data = data_mm)

The summary output is similar to the previous, so we do not show it here. The second
assumption that students change schools only once a year, may also easily be relaxed by
providing more than two grouping factors, say, mm(s1, s2, s3).

5. Conclusion

The present paper is meant to introduce users to the flexibility of the distributional regression
approach and corresponding formula syntax as implemented in brms and fitted with Stan
behind the scenes. Only a subset of modeling options were discussed in detail, which ensured
the paper was not too broad. For some of the more basic models that brms can fit, see
Bürkner (in press). Many more examples can be found in the growing number of vignettes
accompanying the package (see vignette(package = "brms") for an overview).

To date, brms is already one of the most flexible R packages when it comes to regression
modeling. However, for the future, there are quite a few more features that I am planning
to implement (see https://github.com/paul-buerkner/brms/issues for the current list of
issues). In addition to smaller, incremental updates, I have four specific features in mind: mix-
ture models, extended multivariate models, extended autocorrelation structures, and missing
value imputation (in order of current importance). I receive ideas and suggestions from users
almost every day – for which I am always grateful – and so the list of features that will be
implemented in the proceeding versions of brms will continue to grow.
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