
An introduction to circlize package

Zuguang Gu <z.gu@dkfz.de>

March 7, 2017

Circular layout is very useful to represent complicated information, especially for genomic data. It
has advantages to visualize data with long axes or large amount of categories, described with different
measurements. It is also effective to visualize relations between elements.

Circos (http://circos.ca) is an extraordinarily cool tool to make such circular layout and it is
broadly used in real applications, not just popular in Genomic but in a lot of other areas as well. It
is not only a way to visualize data, but also enhances the representation of scientific results into a
level of aesthetics. Therefore, most people call figures with circular layout as ‘circos plot’. Here the
circlize package 1 aims to implement Circos in R. One important advantage for the implementation
in R is that R is an ideal environment which provides seamless connection between data analysis and
data visualization. This package is not a front-end wrapper to generate configuration files for Circos,
but completely coded in R style by using R’s elegant statistical and graphic engine. We aim to keep
the flexibility and configurability of Circos, also make the package more straightforward to use and
enhance it to support more types of graphics.

1 Principle of design

Since most of the figures are composed of simple graphics, such as points, lines, polygon (for filled
colors) et al, circlize implements low-level graphic functions for adding graphics in circular layout, so
that more higher level graphics can be easily comprised by low-level graphics. This principle ensures
the generality that types of high-level graphics are not restricted by the software but determined by
users.

Currently there are following graphic functions that can be used for plotting, they are similar to
the functions without “circos.” prefix from the traditional graphic engine (you can also see the
correspondence in figure 1):

• circos.points: add points in a cell, similar as points.

• circos.lines: add lines in a cell, similar as lines.

• circos.rect: add rectangle in a cell, similar as rect.

• circos.polygon: add polygon in a cell, similar as polygon.

• circos.text: add text in a cell, similar as text.

• circos.axis: add axis in a cell, functionally similar as axis but with more features.

• circos.link: this maybe the unique feature for circular layout to represent relationships between
elements.

For adding points, lines and text in cells through the whole track (among several sectors), the
following functions are available:

• circos.trackPoints: this can be replaced by circos.points through a for loop.

• circos.trackLines: this can be replaced by circos.lines through a for loop.

1It would be great if you can cite: Gu Z et. al. (2014) circlize implements and enhances circular visualization in R. Bioinfor-
matics.

1

http://circos.ca

circos.trackPlotRegion

circos.points

circos.lines

circos.text

circos.rect

circos.polygon

circos.axis

plot.default

points

lines

text

rect

polygon

axis

Figure 1: Correspondence between graphic functions in circlize and in traditional R graphic engine.

2

• circos.trackText: this can be replaced by circos.text through a for loop.

Functions to arrange the circular layout:

• circos.trackPlotRegion: create plotting regions for cells in a track.

• circos.updatePlotRegion: update an existed cell.

• circos.par: graphic parameters.

• circos.info: print general parameters of current circos plot.

• circos.clear: reset graphic parameters and internal variables.

Theoretically, you are able to draw most kinds of circos figures by the above functions. As you will
see, all the figures which are ‘round’ in the six vignettes are all generated by circlize package.

The following part of this vignette is structured as follows: First there is an example to give a quick
glance of how to implement a circular layout by circlize. Then we introduce the basic principle (or the
order of using the circos functions) for plotting. After that there are detailed explanations of graphic
parameters, coordinates transformation and usage of low-level functions. Finally we introduce some
tricks for making more complicated circos plots.

2 A quick glance

Following is an example to show the basic feature and usage of circlize package. First let’s generate
some random data. There needs a factor to represent categories, values on x-axis, and values on y-axis.

set.seed(999)
n = 1000
a = data.frame(factor = sample(letters[1:8], n, replace = TRUE),

x = rnorm(n), y = runif(n))

First initialize the layout. In this step, circos.initialize allocates sectors in the circle according
to ranges of x-values in different categories. E.g, if there are two categories, range for x-values in the
first category is c(0, 2) and range for x-values in the second category is c(0, 1), the first category
would hold approximately 67% areas of the circle. Here we only need x-values because all cells in a
sector share the same x-ranges.

We explicitly set par(mar) because the default graphic device has equal values of width and height,
we set the figure margins to a same value to make sure the plot that we make is a real circle.

library(circlize)
par(mar = c(1, 1, 1, 1), lwd = 0.1, cex = 0.7)
circos.par("track.height" = 0.1)
circos.initialize(factors = a$factor, x = a$x)

Draw the first track (figure 2 A). Before drawing any track we need to know that all tracks should
firstly be created by circos.trackPlotRegion, then those low-level functions can be applied (recall in
traditional R graphic engine, you need first call plot.default and then you can use functions such as
points and lines to add graphics on it). Since x-lims for cells in the track have already been defined
in the initialization step, here we only need to specify the y-lim for each cell, either by y or ylim
argument.

We also add axes in the first track, The axis for each cell is added by panel.fun argument.
circos.trackPlotRegion creates plotting region cell by cell and the panel.fun is actually executed
immediately after the creation of the plotting region for a certain cell. So panel.fun actually means
adding graphics in the “current cell”. After that, we add points through the whole track by circos.trackPoints.
Finally, add two texts in a certain cell (the cell is specified by sector.index and track.index argu-
ment). When adding the second text, we do not specify track.index because the package knows we
are now in the first track.

Here what should be noted is that the first track has a index number of 1. An internal variable
which traces the tracks would set the ‘current track index’ to 1. So if the track index is not specified

3

in the plotting functions such as circos.trackPoints and circos.text which are called after the
creation of the track, the current track index would be used as the default track index. (Details will be
explained in the following sections).

circos.trackPlotRegion(factors = a$factor, y = a$y,
panel.fun = function(x, y) {

circos.axis()
})
col = rep(c("#FF0000", "#00FF00"), 4)
circos.trackPoints(a$factor, a$x, a$y, col = col, pch = 16, cex = 0.5)
circos.text(-1, 0.5, "left", sector.index = "a", track.index = 1)
circos.text(1, 0.5, "right", sector.index = "a")

Draw the second track (figure 2 B).We use circos.trackHist to add histograms in the track. The
function also creates a new track because drawing histogram is really high level, so we do not need to
call circos.trackPlotRegion here. The index for this track is 2.

bgcol = rep(c("#EFEFEF", "#CCCCCC"), 4)
circos.trackHist(a$factor, a$x, bg.col = bgcol, col = NA)

Draw the third track (figure 2 C). Here some meta data for the current cell can be obtained by
get.cell.meta.data. This function needs sector.index and track.index arguments, and if they are
not specified, it means it is the current sector index and the current track index.

circos.trackPlotRegion(factors = a$factor, x = a$x, y = a$y,
panel.fun = function(x, y) {

grey = c("#FFFFFF", "#CCCCCC", "#999999")
sector.index = get.cell.meta.data("sector.index")
xlim = get.cell.meta.data("xlim")
ylim = get.cell.meta.data("ylim")
circos.text(mean(xlim), mean(ylim), sector.index)
circos.points(x[1:10], y[1:10], col = "red", pch = 16, cex = 0.6)
circos.points(x[11:20], y[11:20], col = "blue", cex = 0.6)

})

You can update an existed cell by specifying sector.index and track.index in circos.updatePlotRegion.
The function erases graphics which have been added. Here we erase graphics in one cell in track 2,
sector d and re-add some points (figure 2 D). circos.updatePlotRegion can not modify the xlim and
ylim of the cell as well as other settings related to the position of the cell. circos.updatePlotRegion
will modify current sector index and track index.

circos.updatePlotRegion(sector.index = "d", track.index = 2)
circos.points(x = -2:2, y = rep(0, 5))
xlim = get.cell.meta.data("xlim")
ylim = get.cell.meta.data("ylim")
circos.text(mean(xlim), mean(ylim), "updated")

Draw the fourth track (figure 2 E). Here you can choose different line types which is similar as
type argument in lines.

circos.trackPlotRegion(factors = a$factor, y = a$y)
circos.trackLines(a$factor[1:100], a$x[1:100], a$y[1:100], type = "h")

Draw links (figure 2 F). Links can be from point to point, point to interval or interval to interval.
Some of the arguments will be explained in the following sections.

circos.link("a", 0, "b", 0, h = 0.4)
circos.link("c", c(-0.5, 0.5), "d", c(-0.5,0.5), col = "red",

border = "blue", h = 0.2)
circos.link("e", 0, "g", c(-1,1), col = "green", border = "black", lwd = 2, lty = 2)

4

−
2

−1
0

1

2
3

−2

−1
0

12−2
−1

0
1

2

−2

−1
0

1
2

−
2

−1
0

1
2

−3
−2

−1
0

1 2 3 −2 −1
0

1
2

−2
−1

0
1

2

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●●

●

● ●

●●
●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●
●

● ●
●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●
● ●● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

left
right

A

−
2

−1
0

1

2

3

−2

−1
0

12−2
−1

0
1

2

−2

−1
0

1
2

−
2

−1
0

1
2

−3

−2
−1

0
1 2 3 −2 −1

0
1

2
−2

−1
0

1
2

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●●

●

● ●

●●
●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●
●

● ●
●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●
● ●● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

left
right

B

−
2

−1
0

1

2

3

−2

−1
0

12−2
−1

0
1

2

−2

−1
0

1
2

−
2

−1
0

1
2

−3

−2
−1

0
1 2 3 −2 −1

0
1

2
−2

−1
0

1
2

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●●

●

● ●

●●
●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●
●

● ●
●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●
● ●● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

left
right

a

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

b

●

●
●●

●●

●

● ●

●
●

●
●

●

●
● ●

●

●

●

c●●
● ● ●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●

d

●

●
●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

e●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●
●

f
●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

● g
●

●
● ●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●
●

h

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

C

−
2

−1
0

1

2
3

−2

−1
0

12−2
−1

0
1

2

−2

−1
0

1
2

−
2

−1
0

1
2

−3
−2

−1
0

1 2 3 −2 −1
0

1
2

−2
−1

0
1

2

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●●

●

● ●

●●
●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●
●

● ●
●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●
● ●● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

left
right

a

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

b

●

●
●●

●●

●

● ●

●
●

●
●

●

●
● ●

●

●

●

c●●
● ● ●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●

d

●

●
●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

e●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●
●

f
●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

● g
●

●
● ●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●
●

h

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

up
da

te
d

D

−
2

−1
0

1

2

3

−2

−1
0

12−2
−1

0
1

2

−2

−1
0

1
2

−
2

−1
0

1
2

−3

−2
−1

0
1 2 3 −2 −1

0
1

2

−2
−1

0
1

2

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●●

●

● ●

●●
●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●
●

● ●
●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●
● ●● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

left
right

a

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

b

●

●
●●

●●

●

● ●

●
●

●
●

●

●
● ●

●

●

●

c●●
● ● ●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●

d

●

●
●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

e●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●
●

f
●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

● g
●

●
● ●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●
●

h

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

up
da

te
d

E

−
2

−1
0

1

2

3

−2

−1
0

12−2
−1

0
1

2

−2

−1
0

1
2

−
2

−1
0

1
2

−3

−2
−1

0
1 2 3 −2 −1

0
1

2

−2
−1

0
1

2

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

●

●● ●

●

●

●

●
●

●

●

●

● ●

●●

●

● ●

●●
●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●
●

● ●
●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
● ●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●
● ●● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

left
right

a

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

b

●

●
●●

●●

●

● ●

●
●

●
●

●

●
● ●

●

●

●

c●●
● ● ●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●

d

●

●
●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

e●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●
●

f
●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

● g
●

●
● ●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●
●

h

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

up
da

te
d

F

Figure 2: A step-by-step example by circlize.

5

You can get a summary of your circular layout by circos.info.

circos.info()
circos.info(sector.index = "a", track.index = 2)

Finally we need to reset the graphic parameters and internal variables, so that it will not mess up
your next plot.

circos.clear()

3 Details

In this section, more details of the package are explained.

3.1 Coordinate transformation

There is a data coordinate in which the range for x-axis and y-axis is the range of data, a polar
coordinate to allocates graphics on the circle and a canvas coordinate which really draws the graphics
to the device (figure 3). Since a circos plot is composed by cells which are intersection of sectors and
tracks, each cell has its own data coordinate. The package first transforms from the data coordinate to
a polar coordinate and finally transforms into the canvas coordinate.

The final canvas coordinate is in fact an ordinary coordinate in R plotting system with x-range
from -1 to 1 and y-range from -1 to 1 by default.

It should be noted that the circular layout is always (or mostly except you want to draw some-
thing out of the circle) drawn inside the circle which has radius of 1 (unit circle), from outside to
inside.

For users, they only need to imagine that each cell is a normal rectangular plotting region (data
coordinate) in which x-lim and y-lim are ranges of data in the category respectively. circlize knows
which cell you are in and does all the transformations automatically.

3.2 Rules for making circular layout

The rules for making circular layout is rather simple. It follows the sequence of “initialize - create track
- add graphics - create track - add graphics - ... - clear” (figure 4). Details are as follows:

1. Initialize the layout using circos.initialize. Since circular layout in fact visualizes data which
is in categories, there should be a factor and a x-range variable to allocate categories into sectors.

2. Create plotting regions for the new track and add graphics. The new track is created just inside
the previously created one and the index of the track is added by 1. Only after the creation of
the track can you add other graphics on it. There are three ways to add graphics in cells.

(a) After the creation of the track, use low-level graphic function like circos.points, circos.lines,
... to add graphics cell by cell. It always involves a for loop.

(b) Use circis.trackPoints, circos.trackLines, ... to add graphics through all cells simulta-
neously. However, it is not recommended because it would make you a little confused and
also it cannot make complicated graphics.

(c) Use panel.fun argument in circos.trackPlotRegion to add graphics immediately after
the creation of a certain cell. panel.fun needs two arguments x and y which are x-values
and y-values that are in the current category. This subset operation is applied automatically.
This is the most recommended way.

Plotting regions for cells which have already been created can be updated by circos.updatePlotRegion.
circos.updatePlotRegion will erase everything that you added before.

Low level functions such as circos.points can be applied to any created cell by specifying
sector.index and track.index.

6

text
0 2 4 6 8 10

text

0

2

4 6

8

10

text2 4

6

8

10

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 3: Transformation between different coordinates. Top: data coordinate; Middle: polar coordi-
nate; Bottom: canvas coordinate.

7

circos.initialize circos.trackPlotRegion

circos.points
circos.lines
circos.text

...

● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●●●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

circos.trackPlotRegion
●

●●
●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

circos.points
circos.lines
circos.text

...
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●
● ●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●
●

●
●

●

●

●

●

...
circos.clear

Figure 4: Order of drawing circular layout.

8

3. Repeat step 2 to add more tracks on the circle unless it reaches the center of the circle.

4. Call circos.clear to do cleaning.

As mentioned above, there are three ways to add graphics on the created track.
1. create plotting regions for the whole track and then add graphics by specifying sector.index

and track.index. In the following pseudo code, x1, y1 are data points in a given cell, which means
you need to do data subsetting by yourself.

circos.initialize(factors, xlim)
circos.trackPlotRegion(factors, ylim)
for(sector.index in all.sector.index) {

circos.points(x1, y1, sector.index)
circos.lines(x2, y2, sector.index)

}

2. add graphics through a batch mode. This can be replaced by circos.points or circos.lines
in a for loop. In the following code, you need to specifying the factors and now x and y are data
points for all categories. The data points for a given cell will be subsetted according factors.

circos.initialize(factors, xlim)
circos.trackPlotRegion(factors, ylim)
circos.trackPoints(factors, x, y)
circos.trackLines(factors, x, y)

3. use a panel function to add self-defined graphics as soon as the cell has been created. This is the
way recommended since when you look at panel.fun, it is just like adding graphics in traditional R
graphics system. There will be a more detailed explanation of panel.fun argument in the following
sections.

circos.initialize(factors, xlim)
circos.trackPlotRegion(factors, all_x, all_y, ylim,

panel.fun = function(x, y) {
circos.points(x, y)
circos.lines(x, y)

})

There is several internal variables keeping tracing of the current sector and track when applying
circos.trackPlotRegion and circos.updatePlotRegion. So although functions like circos.points,
circos.lines need to specify the index of sector and track, they will take the current one by default.
As a result, if you draw points, lines, text et al just after the creation of the track or cell, you do not
need to set the sector index and the track index explicitly and it will be put in the most recently created
cell. Note again, only circos.trackPlotRegion and circos.updatePlotRegion can reset the current
track index and sector index.

Finally, in circlize package, function with prefix “circos.track” would affect all cells in one track.

3.3 Sectors and tracks

A circular layout is composed of sectors and tracks, as illustrated in figure 5. The red circle is the track
and the blue one is the sector. The intersection of a sector and a track is called a cell which can be
thought as an imaginary plotting region for data points in a certain category (data coordinate).

Sectors are first allocated on the circle and determined by circos.initialize, then track allocation
is determined by circos.trackPlotRegion. circos.initialize needs a category variable and data
value which implicates the range of data in each category. The range of data can be specified either by
x or xlim.

circos.initialize(factors, x)
circos.initialize(factors, xlim)

9

a:1
a:2

a:3
a:4

c:1

c:2

c:3

c:4

b:1

b:2

b:3

b:4

h:1

h:2

h:3

h:4

f:1
f:2

f:3
f:4

g:1
g:2

g:3
g:4

e:1

e:2

e:3

e:4

d:1

d:2

d:3

d:4

i:1

i:2

i:3

i:4

j:1
j:2

j:3
j:4

Figure 5: Sectors and tracks in circular layout. There are 10 sectors and 4 tracks. Orders of sectors are
randomly permuted.

10

a:1

b:1

c:1

d:1

e:1

f:1

g:1

factor(fa)

d:1

f:1

e:1

c:1

g:1

b:1

a:1

factor(fa, levels = fa)

Figure 6: Different sector orders.

There are something very important that should be noted in the initialization step. In this step,
not only the width of each sector is assigned, but also the order of sectors on the circle is determined.
Order of the sectors are determined by the order of levels of the factor. So if you want to change the
order of the sectors, just change of the level of factors variable. The following codes would generate
different figures (figure 6):

fa = c("d", "f", "e", "c", "g", "b", "a")
f1 = factor(fa)
circos.initialize(factors = f1, xlim = c(0, 1))
f2 = factor(fa, levels = fa)
circos.initialize(factors = f2, xlim = c(0, 1))

If x which is the x-values corresponding to factors is specified, the range for x-values in different
categories will be calculated according to factors automatically. And if xlim is specified, it should be
either a matrix which has same number of rows as the length of the factors levels or a two-element
vector. If it is a two-element vector, it would be extended to a matrix which has the same number
of rows as the length of factors levels. Here, every row in xlim corresponds to the x-ranges of a
category and the order of rows in xlim corresponds to the order of levels of factors.

Since all cells in one sector and in different tracks share the same x-ranges, for each track, we
only need to specify the y-ranges for cells. Similar as circos.initialize, circos.trackPlotRegion
can also receive either y or ylim argument to specify the range of y-values. There is also a force.ylim
argument to specify whether all cells in one same track should share the same y-ranges. force.ylim
is only used along with y.

circos.trackPlotRegion(factors, y)
circos.trackPlotRegion(factors, ylim)

In the track creation step, since all sectors are already allocated in the circle, if factors argument is
not set, circos.trackPlotRegion would create plotting regions for all available sectors. Also, levels of
factors do not need to be specified explicitly because the order of sectors has already be determined
in the initialization step. If users only create cells for part of sectors in the track (not all sectors), in
fact, cells in remaining unspecified sectors are created as well, but with no borders (pretending they
are not created).

Cells are basic units in the circle and are independent with each other. After the creation of cells,
they have self-contained meta values of x-lim and y-lim (data range measured in data coordinate). So
if you are adding graphics in one cell, you do not need to consider things outside the cell and also you
do not need to consider you are in the circle. Just pretending it is rectangle area.

11

plotting region
cell.padding[3]

cell.padding[1]

ce
ll.

pa
dd

in
g[

2]

cell.padding[4]

track.m
argin[1]

track.m
argin[2]

ga
p.

de
gr

ee

gap.degree

Figure 7: Regions in a cell

a

b

c

d

e

f

g

hcircos.par("clock.wise" = FALSE,
start.degree = 30)

a

b

c

d

e

f

g

hcircos.par("clock.wise" = TRUE,
start.degree = −30)

Figure 8: Sector directions. Sector orders are a, b, ..., h.

12

3.4 Graphic parameters

Some basic parameters for the circular layout can be set through circos.par. The parameters are as
follows, note some parameters can only be assigned before the initialization of the circular layout.

• start.degree: The starting degree where to put the first sector. Note this degree is measured in
the standard polar coordinate which means it is always reverse clockwise. See figure 8.

• gap.degree: Gap between two neighbour sectors. It can be a single value which means all gaps
share same degree, or a vector which has same length as factors levels. The first gap is after the
first sector. See figure 8 and figure 7.

• track.margin: Like margin in Cascading Style Sheets (CSS), it is the blank area out of the plotting
region, also outside of the borders. Since left and right margin are controlled by gap.degree,
only bottom and top margin need to be set. The value for the track.margin is the percentage to
the radius of the unit circle. See figure 7.

• cell.padding: Padding of the cell. Like padding in Cascading Style Sheets (CSS), it is the blank
area around the plotting regions, but within the borders. The parameter has four values, which
control the bottom, left, top and right padding respectively. The first and the third padding
values are the percentages to the radius of the unit circle, and the second and fourth values are
the degrees. See figure 7.

• unit.circle.segments: Since curves are simulated by a series of straight lines, this parameter
controls the amount of segments to represent a curve. The minimal length of the line segment
is the length of the unit circle (2*pi) divided by unit.circle.segments. More segments means
better approximation for the curves, while generate larger file size if figures are in PDF format.

• track.height: The default height of tracks. It is the percentage to the radius of the unit circle.
The height includes the top and bottom cell paddings but not the margins.

• points.overflow.warning: Since each cell is in fact not a real plotting region but only an or-
dinary rectangle (or more precisely, rectangle-like), it does not remove points that are plotted
outside of the region. So if some points are out of the plotting region, by default, the package
would continue drawing the points and print warnings. But in some circumstances, draw some-
thing out of the plotting region is useful, such as adding some legend or text. Set this value to
FALSE to turn off the warnings.

• canvas.xlim: The coordinate for the canvas. circlize is forced to put everything in side the unit
circle, so xlim and ylim for the canvas would be c(-1, 1) by default. However, you can set it
to a more broad interval if you want to draw other things out of the circle. By choose proper
canvas.xlim and canvas.ylim, you can only draw part of the circle. E.g. setting canvas.xlim
to c(0, 1) and canvas.ylim to c(0, 1) would only draw circle in the region of (0, pi/2).

• canvas.ylim: The coordinate for the canvas.

• clock.wise: The order of drawing sectors. Default is TRUE which means clockwise (figure 8).
But note that inside each cell, the direction of x-axis is always clockwise and direction of
y-axis is always from inside to outside in the circle.

Default values for graphic parameters are in table 1.
Parameters related to the allocation of sectors cannot be changed after the initialization of the

circular layout. So start.degree, gap.degree, canvas.xlim, canvas.ylim and clock.wise can only
be modified before circos.initialize. The second and the fourth element of cell.padding (left and
right paddings) can not be modified either (or will be ignored).

3.5 Create plotting region

As described above, only after creating the plotting region can you add low-level graphics on it. The
minimal set of arguments for this function is to set either y or ylim which assigns range of y-values
for the track. circos.trackPlotRegion create tracks for all sectors although in some case only parts
of them are visible.

13

parameter default value
start.degree 0
gap.degree 1
track.margin c(0.01, 0.01)
cell.padding c(0.02, 1.00, 0.02, 1.00)
unit.circle.segments 500
track.height 0.2
points.overflow.warning TRUE
canvas.xlim c(-1, 1)
canvas.ylim c(-1, 1)
clock.wise TRUE

Table 1: Default graphic parameters

If factors is not specified, all cells in the track will be created with the same settings. If factors, x
and y are set, they need to be vectors with the same length. Proper values of x and y that correspond
to current cell will be passed to panel.fun by subsetting factors internally.

Graphic arguments such as bg.border and bg.col can either be a scalar or a vector. If it is a
vector, the length must be equal to the length of factors levels and the order should also correspond
to the order of factors levels. Thus you can create plot regions with different styles of borders and
background colors.

If you are confused with the factors orders, you can also customize the borders and background
colors inside panel.fun. get.cell.meta.data("cell.xlim") and get.cell.meta.data("cell.ylim")
give you positions of the plotting region and you can customize plot regions by circos.rect.

3.6 Update plotting region

If track.index is specified in circos.trackPlotRegion and the specified track is already created, the
track will be updated with new graphics. In this case, settings related to the positions of the track such
as the height of the track can not be modified.

circos.trackPlotRegion(data, ylim = c(0, 1), track.index = 1, ...)

For single cell, circos.updatePlotRegion can be used to erase all graphics that have been already
plotted in the cell. In this case, you cannot re-define y-ranges in the cell either.

circos.updatePlotRegion(sector.index, track.index)
circos.points(x, y, sector.index, track.index)

3.7 Points

Adding points by circos.points is similar as points function. Possible usage is:

circos.points(x, y)
circos.points(x, y, sector.index, track.index)
circos.points(x, y, pch, col, cex)

Since circos.points is a low-level function, it can only be applied to cells which have been already
created. If sector.index or track.index is not specified, it uses ‘current’ index for sector and track
which are defined by the most recent circos.trackPlotRegion or circos.updatePlotRegion.

circos.trackPoints can add points in the whole cells on a same track as a batch. It is the same
as if you use circos.points in a for loop.

3.8 Lines

Parameters for adding lines by circos.lines are similar to lines function, as illustrated in figure 9.
One additional feature is that the areas under/above lines can be specified by area argument which

14

ty
pe

 =
 'l

'

●

●

●

●

●

●

●●●

●

type = 'o'

type = 'h'

type = 'h', baseline = 5

type =
 's'

ty
pe

 =
 'l'

, a
re

a
=

TR
UE

●

●

●

●

●

●

●

●

●

●

type = 'o', area = TRUE type = 's', area = TRUE

type = 'l', area = TR
U

E

baseline = 'top'

Figure 9: Line styles

can help to identify the direction of y-axes. Also the base line for the area can be set by baseline.
baseline can be pre-defined string of bottom or top, or numeric values. baseline is also workable
when lty is set to h.

Straight lines are transformed to curves when mapping to circular layout (figure 10). Normally,
curves can be approximated by a series of segments of straight lines. With more segments, there would
be better approximation, but with larger size if you generate figures into PDF files, especially for huge
genomic data. Default number of segments in circlize is a balance between the quality and size of the
figure. Still you can change the number of segments by circos.par("unit.circle.segments"). The
length of minimal segment is the length of the unit circle (2π) divided by circos.par("unit.circle.segments").
When you plot radical line, you can set straight argument to TRUE to get rid of unnecessary segmen-
tation.

Possible usage for circos.lines is:

circos.lines(x, y)
circos.lines(x, y, sector.index, track.index)
circos.lines(x, y, col, lwd, lty, type, straight)
circos.lines(x, y, col, area, baseline, border)

Similar as circos.points, if no sector.index or track.index is specified, ‘current’ index would
be used. Also, there is a circos.trackLines which is identical to circos.lines in a for loop.

3.9 Text

Only the facing of text by circos.text should be noted, as illustrated in figure 11. srt in text has
been degenerated as facing in circos.text which support eight types of rotation that are pre-defined

15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

Figure 10: Straight lines will be transformed into curves in the circle.

16

inside

outside

reverse.clockwise

clockw
ise

downward

====bending.inside====

====edistuo.gnidneb====

inside

outside

re
ve

rs
e.

cl
oc

kw
is

e

clockwise

downward

====bending.inside====

==
==

ed
is

tu
o.

gn
id

ne
b=

==
=

in
si

de

outside

reverse.clockwise

cl
oc

kw
is

e

downward

==
==

be
nd

in
g.

in
si

de
==

==

====edi st uo. gni dneb====

inside

ou
ts

id
e

reverse.clockw
ise

clockwise

downward

====bending.inside====

====edi st uo. gni dneb===
=

Figure 11: Text facing.

in (inside, outside, reverse.clockwise, clockwise, downward, bending.inside, bending.outside).
But adj argument is still applicable in circos.text. Please note for bending.inside and bending.outside,
currently, single line text is only supported. Possible usage for circos.text is:

circos.text(x, y, labels)
circos.text(x, y, labels, sector.index, track.index)
circos.text(x, y, labels, facing, adj, cex, col, font)

In some case, we may want to set the text facing more human-easy. For example, we want the text
facing clockwise in right half of the circle while reverse-closewise in the left half of the circle. This
can be easily done by setting niceFacing to TRUE. This option only works for facing value of inside,
outside, clockwise, reverse.clockwise, bending.inside and bending.outside. When niceFacing
is on, values for internal facing and adj will be re-defined according to the position of the texts in the
circle. Please refer to figure 12 for examples.

By default, adj adjusts text positions either horizontally or vertically. The adjustment can also
be set as a degree that the text rotates by wrapping by degree function, then the other value in adj
corresponds to the adjustment in radical direction. Which one in adj should be set as the degree value
depends on the facing setting.

circos.text(x, y, labels, adj = c(0, degree(5)), facing = "clockwise")

There is also a circos.trackText in the package.

17

●rawText

●niceFacing

●raw
Text

●niceFacing

●raw
Text

●

ni
ce

Fa
ci

ng

●

rawText

●

niceFacing

●

rawText

●

niceFacing

facing = 'clockwise'

adj = c(0, 0.5) ● ra
w

Te
xt

●ni
ce

Fa
ci

ng

●rawText

●niceFacing

●

rawText

●

niceFacing

●

ra
w

Te
xt

●

niceFacing

● ra
w

Te
xt

●ni
ce

Fa
ci

ng●rawText
●niceFacing

●rawText

●niceFacing

facing = 'reverse.clockwise'

adj = c(0, 0.5) ●raw
Text

●

ni
ce

Fa
ci

ng

●

rawText

●

niceFacing

● rawText

●niceFacing

●

ra
w

Te
xt

●niceFacing

●

ra
w

Te
xt

●

ni
ce

Fa
ci

ng

●

rawText

●

niceFacing

●
rawText

●

niceFacing

facing = 'reverse.clockwise'

adj = c(1, 0.5) ●

raw
Text

●ni
ce

Fa
ci

ng

●

rawText

●niceFacing

●
rawText

●

niceFacing

●

raw
Text

●

niceFacing

●

raw
Text●ni

ce
Fa

ci
ng●

rawText

●niceFacing

● rawText

●niceFacing

facing = 'clockwise'

adj = c(1, 0.5) ●

ra
w

Te
xt

●

ni
ce

Fa
ci

ng

●

rawText

●

niceFacing

●

raw
Text

●

ni
ce

Fa
ci

ng

●

rawText

●

niceFacing● rawText

●
niceFacing

●

ra
w

Te
xt

●

niceFacing

●

ra
w

Te
xt

●

ni
ce

Fa
ci

ng

facing = 'inside'

adj = c(0.5, 0)
●

rawText
●

niceFacing

●

raw
Text

●

niceFacing

●

ra
w

Te
xt

●

ni
ce

Fa
ci

ng

●rawText

●
niceFacing●

rawText
●

niceFacing

●

raw
Text

●

niceFacing

●

raw
Text

●

ni
ce

Fa
ci

ng

facing = 'outside'

adj = c(0.5, 0)
● rawText ●

niceFacing

●

ra
w

Te
xt

●

niceFacing

●

ra
w

Te
xt

●

ni
ce

Fa
ci

ng

●

rawText
●

niceFacing●rawText●
niceFacing

●

raw
Text

●

niceFacing

●

raw
Text

●

ni
ce

Fa
ci

ng
facing = 'outside'

adj = c(0.5, 1)
● rawText

●

niceFacing

●

ra
w

Te
xt

●

niceFacing

●

raw
Text ●

ni
ce

Fa
ci

ng
●

rawText

●
niceFacing● rawText

●

niceFacing

●

ra
w

Te
xt

●

niceFacing

●

ra
w

Te
xt

●

ni
ce

Fa
ci

ng
facing = 'inside'

adj = c(0.5, 1)
●rawText

●
niceFacing

●

raw
Text

●

niceFacing

●

rawTextrawTextrawTextraw
Textraw

T
ext

●

niceFacingniceFacingniceFacingniceF
acing

●

raw
TextrawTextrawTextrawTextrawText

●

gnicaFecingnicaFecingnicaFecingnicaFecin

●

ra
wTe

xt
ra

w
Te

xt
ra

w
T

ex
tr

aw
T

ex
tr

aw
Te

xt

●

gn
ic

aF
ec

in
gn

ic
a

Fe
ci

n
g

ni
c

a
F

e c
i n

gn
i c

a
Fe

ci
n

facing = 'bending.inside'

adj = c(0.5, 0)

●

t xeTwart xeTwart xeT
wart xe

T
war

●

niceFacingniceFacingniceFacing

●

txeTwartxeTwartxeTwartxeTwar
●

gnicaFecingnicaFecingnicaFecin

●

tx

eT
wa

rt
xe

T
wa

rt
xe

T
w a

rt
x e

T
wa

r

●

gn
ic

aF
ec

in
gn

ic
a

Fe
ci

n g
ni

c a
Fe

ci
n

facing = 'bending.outside'

adj = c(0.5, 0)

●

t xeTwart xeTwart xeT
wart xe

T
wart xe

T
w

ar

●

niceFacingniceFacingniceFacingniceF
acing

●

txeT
wartxeTwartxeTwartxeTwartxeTwar ●

gnicaFecingnicaFecingnicaFecingnicaFecin

●

tx

eT
wa

rt
xe

T
wa

rt
xe

T
w

ar
t x

e
T

wa
rt

x e
T

wa
r

●

gn
ic

aF
ec

in
gn

ic
a

Fe
ci

n
g

ni
c

a
F

e c
i n

gn
i c

a
Fe

ci
n

facing = 'bending.outside'

adj = c(0.5, 1)

●

rawTextrawTextraw
Textraw

Text

●

niceFacingniceFacingniceFacing

●

rawTextrawTextrawTextrawText

●

gnicaFecingnicaFecingnicaFecin

●

raw
Te

xt
ra

w
Te

xt
ra

w
Te

xt
ra

w
Te

xt

●

gn
ic

aF
ec

in
gn

ic
a

Fe
ci

n g
ni

c a
Fe

ci
n

facing = 'bending.inside'

adj = c(0.5, 1)

Figure 12: Human easy text facing. When niceFacing is on, settings in the same row are actually
identical. Red dots represent positions of the texts.

18

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

● ●

●●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

Figure 13: Area of standard deviation of the smoothed line.

3.10 Rectangle

If you imagine the plotting region in a cell as Cartesian coordinate, then circos.rect draws rectangles.
In the circle, the up and bottom edge become two arcs. This function can be vectorized.

circos.rect(xleft, ybottom, xright, ytop)
circos.rect(xleft, ybottom, xright, ytop, sector.index, track.index)
circos.rect(xleft, ybottom, xright, ytop, col, border, lty, lwd)

3.11 Polygon

Similar as circos.rect and polygon, circos.polygon draws a polygon through a series of points in
a cell:

circos.polygon(x, y)
circos.polygon(x, y, sector.index, track.index)
circos.polygon(x, y, col, border, lty, lwd)

In figure 13, the area of standard deviation of the smoothed line is drawn by circos.polygon.
(Source code is in Examples section of circos.polygon help page.)

3.12 Axis

Because there may be no space to put y-axis, only adding x-axis for each cell is supported by circos.axis,
as illustrated in figure 14. A lot of styles for axis can be set such as the position and length of major

19

ticks, the number of minor ticks, the position and direction of the axis labels and the position of the
x-axis.

In figure 14, axis styles in different sectors are :

• a: Major ticks are calculated automatically, other settings are default.

• b: Ticks are pointing to inside of the circle, facing of tick labels is set to outside.

• c: Position of x-axis is bottom of the cell.

• d: Ticks are pointing to inside of the circle, facing of tick labels is set to reverse.clockwise.

• e: Self-defined major ticks.

• f: Self-defined major ticks and tick labels, no minor ticks.

• g: No ticks for both major and minor ones, facing of tick labels is set to reverse.clockwise.

• h: Number of minor ticks between two major ticks is set to 2. Length of ticks is longer and axis
labels are more away from ticks. Facing of tick labels is set to clockwise.

The facing of labels text can also be optimized by labels.niceFacing (by default it is TRUE).
For circos.axis, possible usage is as follows. h can be pre-defined string of bottom or top, or

numeric values.

circos.axis(h)
circos.axis(h, sector.index, track.index)
circos.axis(h, major.at, labels, major.tick)
circos.axis(h, major.at, labels, major.tick, labels.font, labels.cex,

labels.facing, labels.away.percentage)
circos.axis(h, major.at, labels, major.tick, minor.ticks,

major.tick.percentage, lwd)

Y-axis is also supported (figure 14), but you need to set gap.degree in circos.par to make sure
there are enough spaces for y-axes.

circos.yaxis(side)
circos.yaxis(at, labels, sector.index, track.index)

3.13 Links

circos.link draws links from points and intervals (figure 15 A). If both ends are single points, the
link is represented as a line. If one of the ends is an interval, the link would be a belt/ribbon. Links
do not hold any position as tracks, so they can be overlapping with tracks.

Possible usage for circos.link is:

circos.link(sector.index1, 0, sector.index2, 0)
circos.link(sector.index1, c(0, 1), sector.index2, 0)
circos.link(sector.index1, c(0, 1), sector.index2, c(1, 2))
circos.link(sector.index1, c(0, 1), sector.index2, 0, col, lwd, lty, border)

The position of link ‘root’ is controlled by rou. By default, it is the end position of the most
recently created track. So normally, you don’t need to care about this setting. The default value of rou
is calculated by an interval function get_most_inside_radius():

circlize:::get_most_inside_radius

20

a

bc

d
e

f g

h
0

2
4

6
8

100
2

4
6810

0246
8

10

0
2

4
6

8

10

1
3

5
7

9

a
c

e
g f

a1 c1 e1 g1

f1

a1

c1

e1

g1

f1

0 2 4 6 8 100
2
4
6
8
10

0
2

4
6

8
10

0246810

0
2
4
6
8
10

0
2
4
6
8
10

Figure 14: Axes

21

A B

default ‘h‘

h = 0.5
h2 = 0.2

C

de
fa

ult

h=0.2

h=0.8

w=2

w=−
0.

5 w=0.1
h=0.3

D

E F

Figure 15: A) set different positions of roots; B) set different height of two borders. C,D) set different
h and w. E) if two branches overlap, the link will be degenerated as a ’hill’. F) links with directions.

22

function ()
{
tracks = get.all.track.index()
if (length(tracks) == 0) {
1
}
else {
n = length(tracks)
get.cell.meta.data("cell.bottom.radius", track.index = tracks[n]) -
get.cell.meta.data("track.margin", track.index = tracks[n])[1] -
circos.par("track.margin")[2]
}
}
<environment: namespace:circlize>

By default, the two roots of the link are located in a same circle. The positions of two roots can be
assigned with different values by rou1 and rou2 (figure 15 B).

circos.link(sector.index1, 0, sector.index2, 0, rou)
circos.link(sector.index1, 0, sector.index2, 0, rou1, rou2)

The height of the link can be controlled by h argument in circos.link.
When the link represents as a ribbon (i.e. link from point to interval or from interval to interval),

It can not ensure that one border is always below or above the other. Which means, in some case, the
two borders are intersected and the link would be messed up. It happens especially when position
of the two ends are too close or the width of one end is extremely large while the width of the other
end is too small. In that case, users can manually set height of the top and bottom border by h and h2
(figure 15 C).

circos.link(sector.index1, 0, sector.index2, 0, h)
circos.link(sector.index1, 0, sector.index2, 0, h, h2)

The border of link is in fact a quadratic Bezier curve, so you can control the shape of the link by w
and w2 (w2 controls the shape of bottom border, figure 15 D). For more explanation of w, please refer
to http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Rational_B.C3.A9zier_curves.

circos.link(sector.index1, 0, sector.index2, 0, w)
circos.link(sector.index1, 0, sector.index2, 0, w, w2)

If two branches overlap, the link will be de-generated as a ’hill’ (figure 15, E). Also, links can have
arrows to identify the directions (figure 15, F). For adding arrows, the directional argument with
value 0 means there is no direction, 1 means the direction is from point1 to point2 and -1 means the
direction is from point2 to point1. If the link represents as a belt, a line with arrow will be added in
the center of the link to represent directions.

circos.link(sector.index1, 0, sector.index2, 0, directional = 1)
circos.link(sector.index1, c(0, 1), sector.index2, c(0, 1), directional = -1)

3.14 The panel.fun argument in circos.trackPlotRegion

panel.fun argument in circos.trackPlotRegion is useful to apply plotting as soon as the cell
has been created. This self-defined function needs two arguments x and y which are data points
that belong to this cell. The value for such values are automatically extracted from x and y in
circos.trackPlotRegion according to the category argument factors. In the following example,
inside panel.fun, for category a, x would be 1:3 and y are 5:3. If x or y in circos.trackPlotRegion
is NULL, then x or y inside panel.fun is also NULL.

23

http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Rational_B.C3.A9zier_curves

factors = c("a", "a", "a", "b", "b")
x = 1:5
y = 5:1
circos.trackPlotRegion(factors = factors, x = x, y = y,

panel.fun = function(x, y) {
circos.points(x, y)

})

In panel.fun, one thing important is that if you use any low-level graphic functions, you don’t need
to specify sector.index and track.index explicitly. Remember that when applying circos.trackPlotRegion,
cells in the track are created one after one. When a cell is created, circlize would set the sector index
and track index of the cell as the ‘current’ index for the sector and track. When the cell is created,
panel.fun would be executed immediately. Without specifying sector.index and track.index, the
‘current’ one would be used and that’s exactly what you need.

The advantage of panel.fun is that it makes you feel you are using graphical functions in tradi-
tional graphic engine (You can see it is the same of using circos.points(x, y) and points(x, y)).
It will be much easier for users to understand and customize new graphics.

Inside panel.fun, more information of the ‘current’ cell can be obtained through get.cell.meta.data.
Also this function takes the ‘current’ sector and ‘current’ track by default, Explanation of get.cell.meta.data
can be found in following section.

3.15 High-level plotting functions

With those low-level graphic functions such as circos.points, circos.lines, more high-level func-
tions can be easily implemented. circlize provides a high-level function circos.trackHist which
draws histograms or the density distributions of data (figure 16). Users can learn how to implement
high-level functions to support graphs such as barplot, heatmap, ... according to the source code of
circos.trackHist. In circos.trackHist, it first calls hist or density to calculate the distribution,
then creates a new track, finally uses circos.rect or circos.lines to draw histograms or density
distributions.

In figure 16, the first track is histograms in which all the ylim are the same. The second track is
histograms in which force.ylim is FALSE. The third and the fourth tracks are density distributions in
which y-lims are forced same or not.

In figure 17 there are heatmap and cluster dendrograms in circular layout. Heatmap is series of
grids which can be drawn by circos.rect. Dendrograms are series of lines which can be drawn by
circos.lines. Here we also have a high-level circos.dendrogram function to draw the dendrograms.

3.16 Other functions

get.cell.meta.data can provide detailed information for a cell. It needs the index of sector and track
as arguments. As usual, it uses ‘current’ index by default.

get.cell.meta.data(name)
get.cell.meta.data(name, sector.index, track.index)

Items that can be extracted by get.cell.meta.data are:

• sector.index: The name (label) for the sector.

• sector.numeric.index: Numeric index for the sector. It is the numeric order of factors levels
in initialization step.

• track.index: Numeric index for the track.

• xlim: Minimal and maximal values on the x-axis.

• ylim: Minimal and maximal values on the y-axis.

• xcenter: mean of xlim.

24

Figure 16: Histograms in circular layout.

25

Figure 17: Circular heatmap with dendrogram trees.

26

• ycenter: mean of ylim.

• xrange: Range of xlim.

• yrange: Range of ylim.

• cell.xlim: Minimal and maximal values on the x-axis extended by cell paddings.

• cell.ylim: Minimal and maximal values on the y-axis extended by cell paddings.

• xplot: Degree of right and left borders in the plotting region. The first element corresponds
to the start point of values on x-axis (cell.xlm[1]) and the second element corresponds to the
end point of values on x-axis (cell.xlim[2]) Since x-axis in data coordinate in cells are always
clockwise, xplot[1] is larger than xplot[2].

• yplot: Radius of bottom and top radius in the plotting region.

• cell.start.degree: Same as xplot[1].

• cell.end.degree: Same as xplot[2].

• cell.bottom.radius: Same as yplot[1].

• cell.top.radius: Same as yplot[2].

• track.margin: Margins of the cell.

• cell.padding: Paddings of the cell.

One common use of get.cell.meta.data is to put inside panel.fun when calling circos.trackPlotRegion,
then you can get detailed information for the ‘current‘ cell where you want to put graphics.

The core function circlize transform from data coordinate (coordinate in the cells) to the polar
coordinate and reverse.circlize transform from polar coordinate to data coordinate of a certain cell.
The default transformation is applied in the ‘current‘ cell.

factors = c("a", "b")
circos.initialize(factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1))
circlize(0.5, 0.5, sector.index = "a", track.index = 1)

theta rou
[1,] 270.5 0.89

reverse.circlize(90, 0.9, sector.index = "a", track.index = 1)

x y
[1,] 1.519774 0.56

reverse.circlize(90, 0.9, sector.index = "b", track.index = 1)

x y
[1,] 0.5028249 0.56

circos.clear()

The results are different for two reverse.circlize calls because the reference cells are different.
draw.sector draws sectors, rings or their parts. This is useful if you want to highlight some part

of your circos plot. As you can guess, this function needs arguments of the position of circle center,
the start degree and the end degree for sectors, and radius for two edges (or one edge) which are up
or bottom border of a cell. Actually, draw.sector is independent from the circos plot.

draw.sector(start.degree, end.degree, rou1)
draw.sector(start.degree, end.degree, rou1, rou2, center)
draw.sector(start.degree, end.degree, rou1, rou2, center, col, border, lwd, lty)

27

Figure 18: Examples of draw.sector.

Directions from start.degree and end.degree is important to draw sectors. By default, it is clock
wise.

draw.sector(start.degree, end.degree, clock.wise = FALSE)

Following code shows some examples of draw.sector (figure 18).

par(mar = c(1, 1, 1, 1))
plot(c(-1, 1), c(-1, 1), type = "n", axes = FALSE, ann = FALSE)
draw.sector(20, 0)
draw.sector(30, 60, rou1 = 0.8, rou2 = 0.5, clock.wise = FALSE, col = "#FF000080")
draw.sector(350, 1000, col = "#00FF0080", border = NA)
draw.sector(0, 180, rou1 = 0.25, center = c(-0.5, 0.5), border = 2, lwd = 2, lty = 2)
draw.sector(0, 360, rou1 = 0.7, rou2 = 0.6, col = "#0000FF80")

In order to highlight cells in the circos plot, we can use get.cell.meta.data to get the information
of positions of cells. E.g. the start degree and end degree can be obtained through cell.start.degree
and cell.end.degree, and the position of the top border and bottom border on the circle radius
can be obtained through cell.top.radius and cell.bottom.radius. Following code shows several
examples to highlight sectors and tracks (figure 19 A).

par(mar = c(1, 1, 1, 1))
factors = letters[1:8]
circos.initialize(factors, xlim = c(0, 1))

28

for(i in 1:3) {
circos.trackPlotRegion(ylim = c(0, 1))

}
circos.info(plot = TRUE)

If we want to highlight sector a:

draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "a"),
get.cell.meta.data("cell.end.degree", sector.index = "a"),
rou1 = 1, col = "#FF000040")

If we want to highlight track 1:

draw.sector(0, 360,
rou1 = get.cell.meta.data("cell.top.radius", track.index = 1),
rou2 = get.cell.meta.data("cell.bottom.radius", track.index = 1),
col = "#00FF0040")

If we want to highlight track 2 and 3 in sector e and f:

draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "e"),
get.cell.meta.data("cell.end.degree", sector.index = "f"),
get.cell.meta.data("cell.top.radius", track.index = 2),
get.cell.meta.data("cell.bottom.radius", track.index = 3),
col = "#0000FF40")

If we want to highlight specific regions such as a small region inside cell (h:2), we can use circlize
to calculate the exact positions on the circle. But always keep in mind that x-axis in the cell are always
clock wise.

pos = circlize(c(0.2, 0.8), c(0.2, 0.8), sector.index = "h", track.index = 2)
draw.sector(pos[1, "theta"], pos[2, "theta"], pos[1, "rou"], pos[2, "rou"],

clock.wise = TRUE, col = "#00FFFF40")
circos.clear()

If the purpose is simply highlight complete cells, there is a shortcut function highlight.sector
for which you only need to specify index for sectors and tracks that you want to to highlight (figure
19 B). It also supports to add text in the middle of a list of neighbouring sectors. Here text.vjust can
be used to adjust the position of the text in the radical direction.

factors = letters[1:8]
circos.initialize(factors, xlim = c(0, 1))
for(i in 1:4) {

circos.trackPlotRegion(ylim = c(0, 1))
}
circos.info(plot = TRUE)

highlight.sector(c("a", "h"), track.index = 1, text = "a and h belong to a same group",
facing = "bending.inside", niceFacing = TRUE, text.vjust = -3)

highlight.sector("c", col = "#00FF0040")
highlight.sector("d", col = NA, border = "red", lwd = 2)
highlight.sector("e", col = "#0000FF40", track.index = c(2, 3))
highlight.sector(c("f", "g"), col = NA, border = "green",

lwd = 2, track.index = c(2, 3))
highlight.sector(factors, col = "#FFFF0040", track.index = 4)
circos.clear()

29

a:1
a:2

a:3

b:1

b:2

b:3

c:1

c:2

c:3
d:1

d:2
d:3

e:1
e:2

e:3

f:1

f:2

f:3

g:1

g:2

g:3
h:1

h:2
h:3

A

a:1
a:2

a:3
a:4

b:1

b:2

b:3

b:4

c:1

c:2

c:3

c:4

d:1
d:2

d:3
d:4

e:1
e:2

e:3
e:4

f:1

f:2

f:3

f:4

g:1

g:2

g:3

g:4

h:1
h:2

h:3
h:4

a a
n

d
 h

 b
e

lo
n

g
 to

 a
 sa

m
e

 g
ro

u
p

B

Figure 19: Highlight sectors and tracks. A) highlight by code draw.sector; B) highlight by
highlight.sector.

30

3.17 Get information of circos plot

You can get basic information of your current circos plot by circos.info. The function can be applied
at any time.

factors = letters[1:3]
circos.initialize(factors = factors, xlim = c(1, 2))
circos.info()

All your sectors:
[1] "a" "b" "c"
##
No track has been created

circos.trackPlotRegion(ylim = c(0, 1))
circos.info(sector.index = "a", track.index = 1)

sector index: 'a'
track index: 1
xlim: [1, 2]
ylim: [0, 1]
cell.xlim: [0.991453, 2.008547]
cell.ylim: [-0.1, 1.1]
xplot (degree): [360, 241]
yplot (radius): [0.79, 0.99]
track.margin: c(0.01, 0.01)
cell.padding: c(0.02, 1, 0.02, 1)
##
Your current sector.index is c
Your current track.index is 1

circos.clear()

It can also add labels to cells by circos.info(plot = TRUE).

3.18 Do not forget circos.clear

You should always call circos.clear to complete the circos plot. Because there are several parameters
for circos plot which can only be set before circos.initialize. So before you draw the next circos
plot, you need to reset all these parameters.

3.19 A simple example of implementing high-level graphics

We will show a simple example (figure 20) which combines several low-level graphic functions to
construct complicated graphics for specific purpose.

In the following code, we make histogram in another circular way. The bars are added by circos.rect,
reference lines are added by circos.lines, labels are added by circos.text and axes are added by
circos.axis.

category = paste0("category", "_", 1:10)
percent = sort(sample(40:80, 10))
color = rev(rainbow(length(percent)))

par(mar = c(1, 1, 1, 1))
circos.par("start.degree" = 90)
circos.initialize("a", xlim = c(0, 100)) # 'a` just means there is one sector
circos.trackPlotRegion(ylim = c(0.5, length(percent)+0.5), , track.height = 0.8,

bg.border = NA, panel.fun = function(x, y) {
xlim = get.cell.meta.data("xlim") # in fact, it is c(0, 100)

31

category_1 − 41%
category_2 − 43%
category_3 − 44%
category_4 − 47%
category_5 − 50%
category_6 − 53%
category_7 − 54%
category_8 − 69%
category_9 − 75%

category_10 − 78%

0%

5%

10%

15%

20%
80

%

85
%

90%

25
%

30
%

35
%

40%

45%

50%

55%

60%

65%

70%

75%
Figure 20: Combine low-level graphic functions to generate high-level graphics.

for(i in seq_along(percent)) {
circos.lines(xlim, c(i, i), col = "#CCCCCC")
circos.rect(0, i - 0.45, percent[i], i + 0.45, col = color[i],

border = "white")
}

for(i in seq_along(percent)) {
circos.text(xlim[1], i, paste0(category[i], " - ", percent[i], "%"),

facing = "downward", adj = c(1.1, 0.5))
}

breaks = seq(0, 90, by = 5)
circos.axis(h = "top", major.at = breaks, labels = paste0(breaks, "%"),

major.tick.percentage = 0.02, labels.cex = 0.6,
labels.away.percentage = 0.01)

})

circos.clear()

32

4 Advanced technique

4.1 Zooming of sectors

Under the default settings, width of sectors are calculated according to the range of data in each
category. In some circumstance, you may want to manually set the width of each sector. Normally
it is not a good idea since width of sectors can reflect useful information of your data. However,
sometimes it is useful to modify the width of sectors, e.g., you want to put your plot only in half
of the circle while in the other half of the circle, zooming of certain sectors are applied. The width
of sectors can be manually set by sector.width argument in circos.initialize. The value for the
argument should be a vector with length of either one or as same as the number of categories (again,
order of sector.width vector corresponds to the order of levels of factors). sector.width is relative
value, and it will be scaled to percentage (e.g. if you set sector.width to c(1, 3), it will be scaled as
c(0.25, 0.75)).

In order to zoom e.g. one sector, the copy of the data corresponding to this sector should be
attached to the original data. Since these two sectors (original sector and the zoomed sector) contain
the same data, if same plotting functions are applied to them, there will be same graphics generated.

In the following code, sector a and b are zoomed. To make thing simple, we put all data into one
data frame.

df = data.frame(factors = sample(letters[1:6], 100, replace = TRUE),
x = rnorm(100),
y = rnorm(100),
stringsAsFactors = FALSE)

Extract the data for sector a and b, and assign to a new variable.

zoom_df = df[df$factors %in% c("a", "b"),]

Modify the names for the zoomed sector, because in the circos plot, zoomed sectors are same as
other normal sectors. Attach to the original data frame.

zoom_df$factors = paste0("zoom_", zoom_df$factors)
df2 = rbind(df, zoom_df)

In order to put the normal sectors in half of the circle and the zoomed sectors in the other half, just
normalize the width of normal sectors and normalize the width of zoomed sectors separately.

xrange = tapply(df2$x, df2$factors, function(x) max(x) - min(x))
normal_sector_index = unique(df$factors)
zoomed_sector_index = unique(zoom_df$factors)
sector.width = c(xrange[normal_sector_index] / sum(xrange[normal_sector_index]),

xrange[zoomed_sector_index] / sum(xrange[zoomed_sector_index]))

Now make the circos plot in the normal way.

par(mar = c(1, 1, 1, 1))
circos.par(start.degree = 90)
circos.initialize(df2$factors, x = df2$x, sector.width = sector.width)
circos.trackPlotRegion(df2$factors, x = df2$x, y = df2$y, panel.fun = function(x, y) {

circos.points(x, y, col = "red", pch = 16, cex = 0.5)
xlim = get.cell.meta.data("xlim")
ylim = get.cell.meta.data("ylim")
sector.index = get.cell.meta.data("sector.index")
circos.text(mean(xlim), mean(ylim), sector.index, niceFacing = TRUE)

})

If you want to add links from original sectors to zoomed sectors,

33

●●

●

●

●

●

● ●●

●●

●

●

a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

b

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

c

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

d

●

●

●
●

●

●

●

●

● ●

●

●

●

●

e
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●f
●●

●

●

●

●

●

●

●

●

●

●

●

zoom_a

●

●●
●

●

●

●

●

●

●

●

●

●

●

zo
om

_b

Figure 21: Zoom sectors.

circos.link("a", get.cell.meta.data("cell.xlim", sector.index = "a"),
"zoom_a", get.cell.meta.data("cell.xlim", sector.index = "zoom_a"),
border = NA, col = "#00000020")

circos.clear()

4.2 Draw part of the circos layout

canvas.xlim and canvas.ylim in circos.par is useful to make figures on only part of circle. In the
example, only sectors between 0◦ to 90◦ are plotted (figure 22). First, four sectors with the same width
are initialized. Then only the first sector is drawn with points and lines. From figure 22, we in fact
created the whole circle, but only a quarter of the circle is in the canvas region. Codes are as follows.

par(mar = c(1, 1, 1, 1))
circos.par("canvas.xlim" = c(0, 1), "canvas.ylim" = c(0, 1),

"clock.wise" = FALSE, "gap.degree" = 0)
factors = letters[1:4]
circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)
circos.updatePlotRegion(sector.index = "a", bg.border = "black")
x1 = runif(100)
y1 = runif(100)
circos.points(x1, y1, pch = 16, cex = 0.5)
circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)

34

circos.updatePlotRegion(sector.index = "a", bg.border = "black")
circos.lines(1:100/100, y1, pch = 16, cex = 0.5)
circos.clear()

In the second situation, in some tracks, you only need to add graphic on subset of sectors. Remem-
ber when you are creating new track with circos.trackPlotRegion and set bg.col and bg.border to
NA, it means create the new track while draw nothing. After that, you can use circos.updatePlotRegion
to update these invisible cells of interest and add graphics on it (figure 23).

par(mar = c(1, 1, 1, 1))
factors = letters[1:4]
circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.col = NA, bg.border = NA)
circos.updatePlotRegion(sector.index = "a", bg.border = "black")
x1 = runif(100)
y1 = runif(100)
circos.points(x1, y1, pch = 16, cex = 0.5)

circos.trackPlotRegion(factors = factors, ylim = c(0, 1),bg.col = NA, bg.border = NA)
circos.updatePlotRegion(sector.index = "a", bg.border = "black")
x1 = runif(100)
y1 = runif(100)
circos.points(x1, y1, pch = 16, cex = 0.5)

circos.trackPlotRegion(factors = factors, ylim = c(0, 1))
circos.trackPlotRegion(factors = factors, ylim = c(0, 1))
circos.clear()

4.3 Combine more than one circos plots

Since circular layout by circlize is finally plotted in an ordinary R plotting system. Two seperated
circular layouts can be plotted together by some tricks. Here the key is par(new = TRUE) which
allows to draw a new figure on the previous canvas region. Just remember the radius of the circos is
always 1.

The first example is to make one outer circos plot and an inner circos plot (figure 24).

par(mar = c(1, 1, 1, 1))
factors = letters[1:4]
circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

circos.text(0.5, 0.5, "outer circos")
})
circos.clear()

par(new = TRUE)
circos.par("canvas.xlim" = c(-2, 2), "canvas.ylim" = c(-2, 2))
factors = letters[1:3]
circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

circos.text(0.5, 0.5, "inner circos")
})
circos.clear()

The second example is to make two separated circos plot in which every circos plot only contains
a half (figure 25).

35

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1

1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1

1

Figure 22: One quarter of the circle.

36

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

Figure 23: Only plot subset of sectors in certain tracks.

37

ou
te

r c
irc

os

outer circos

ou
te

r c
irc

os

outer circos

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

inner circos

inner circos

inner circos

−2 −1 0 1 2

−
2

−
1

0
1

2

ou
te

r c
irc

os

outer circos

ou
te

r c
irc

os

outer circos

inner circos

inner circos

inner circos

Figure 24: An outer circos plot plus an inner one.

38

par(mar = c(1, 1, 1, 1))
factors = letters[1:4]
circos.par("canvas.xlim" = c(-1, 1.5), "canvas.ylim" = c(-1, 1.5), start.degree = -45)
circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)
circos.updatePlotRegion(sector.index = "a")
circos.text(0.5, 0.5, "first one")
circos.updatePlotRegion(sector.index = "b")
circos.text(0.5, 0.5, "first one")

circos.clear()

par(new = TRUE)
circos.par("canvas.xlim" = c(-1.5, 1), "canvas.ylim" = c(-1.5, 1), start.degree = -45)
circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)
circos.updatePlotRegion(sector.index = "d")
circos.text(0.5, 0.5, "second one")
circos.updatePlotRegion(sector.index = "c")
circos.text(0.5, 0.5, "second one")

circos.clear()

The third example is to draw sectors with different radius (figure 26). In fact, it makes four circos
plots in which only one sector of each graphs is plotted. Note links can not be drawn in these different
sectors because links can only be drawn in one circos plot.

library(circlize)
par(mar = c(1, 1, 1, 1))
factors = letters[1:4]
lim = c(1, 1.1, 1.2, 1.3)
for(i in 1:4) {

circos.par("canvas.xlim" = c(-lim[i], lim[i]),
"canvas.ylim" = c(-lim[i], lim[i]), "track.height" = 0.4)

circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA)
circos.updatePlotRegion(sector.index = factors[i], bg.border = "black")
circos.points(runif(10), runif(10), pch = 16)
circos.clear()
par(new = TRUE)

}
par(new = FALSE)

It is different from example in “Draw part of the circos layout” section. In that example, cells both
visible and invisible all belong to a same track and they are in a same circos plot, so they should have
same radius. But here, cells have different radius and they belong to different circos plot.

4.4 Draw outside and combine with canvas coordinate

Sometimes it is very useful to draw something outside plotting region. (You can think it is similar as
par(xpd = NA) setting.) The following is a simple example to illustrate such circumstance (figure 27).

set.seed(12345)
par(mar = c(1, 1, 1, 1))
factors = letters[1:4]
circos.par("canvas.xlim" = c(-1.5, 1.5), "canvas.ylim" = c(-1.5, 1.5), "gap.degree" = 10)
circos.initialize(factors = factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

39

first one

first one

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

second one

second one

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

first one

first one

second one

second one

Figure 25: Two separated circos plots

40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 26: Sectors with different radius.

41

●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●

●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
● ●

● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

mark

●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●●●

●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●● ●

●●●●●●●●●●●
●

●
●

●
●
●
●
●
●

this is
the center

● this is the legend

Figure 27: Draw outside the cell and combine with canvas coordinate.

circos.points(1:20/20, 1:20/20)
})
circos.lines(c(1/20, 0.5), c(1/20, 3), sector.index = "d", straight = TRUE)
circos.text(0.5, 3, "mark", sector.index = "d", adj = c(0.5, 0))

circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {
circos.points(1:20/20, 1:20/20)

})
text(0, 0, "this is\nthe center", cex = 1.5)
legend("bottomleft", pch = 1, legend = "this is the legend")
circos.clear()

Since the final graphics are plotted in an ordinary canvas plotting region, we can add additional
graphics through the traditional way, such as legends, texts, ...

4.5 Arrange figures with layouts

You can use layout to arrange multiple figures together (also it is available by par(mfrow) or par(mfcol))
(figure 28).

layout(matrix(1:9, 3, 3))
for(i in 1:9) {

factors = 1:8
par(mar = c(0.5, 0.5, 0.5, 0.5))

42

Figure 28: Arrange multiple circos plots.

circos.par(cell.padding = c(0, 0, 0, 0))
circos.initialize(factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), track.height = 0.05,

bg.col = rand_color(8), bg.border = NA)
for(i in 1:20) {

se = sample(1:8, 2)
circos.link(se[1], runif(2), se[2], runif(2),

col = rand_color(1, transparency = 0.4), border = NA)
}
circos.clear()

}

43

	Principle of design
	A quick glance
	Details
	Coordinate transformation
	Rules for making circular layout
	Sectors and tracks
	Graphic parameters
	Create plotting region
	Update plotting region
	Points
	Lines
	Text
	Rectangle
	Polygon
	Axis
	Links
	The panel.fun argument in circos.trackPlotRegion
	High-level plotting functions
	Other functions
	Get information of circos plot
	Do not forget circos.clear
	A simple example of implementing high-level graphics

	Advanced technique
	Zooming of sectors
	Draw part of the circos layout
	Combine more than one circos plots
	Draw outside and combine with canvas coordinate
	Arrange figures with layouts

