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Abstract

A short vignette illustrating Cauchy’s integral theorem using numerical integration
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In this very short vignette, I will use contour integration to evaluate

∫
∞

x=−∞

eix

1 + x2
dx (1)

using numerical methods. This document is part of the elliptic package (Hankin 2006).

The residue theorem tells us that the integral of f(z) along any closed nonintersecting path,
traversed anticlockwise, is equal to 2πi times the sum of the residues inside it.

Take a semicircular path P from −R to +R along the real axis, then following a semicircle in
the upper half plane, of radius R to close the loop (figure 1. Now consider large R. Then P
encloses a pole at i [there is one at −i also, but this is outside P, so irrelevent here] at which
the residue is −i/2e. Thus

∮
P

f(z) dz = 2πi · (−i/2e) = π/e (2)

along P ; the contribution from the semicircle tends to zero as R −→ ∞; thus the integral
along the real axis is the whole path integral, or π/e.

We can now reproduce this result analytically. First, choose R:

> R <- 400

And now define a path P . First, the semicircle:

> u1 <- function(x){R*exp(pi*1i*x)}

> u1dash <- function(x){R*pi*1i*exp(pi*1i*x)}

and now the straight part along the real axis:

> u2 <- function(x){R*(2*x-1)}

> u2dash <- function(x){R*2}

And define the function:
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(R,0)(-R,0)

Figure 1: Contour integration path from (−R, 0) to (R, 0) along the real axis, followed by
a semicircular return path in the positive imaginary half-plane. Poles of eix/ (1 + x+ 2)
symbolised by explosions
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> f <- function(z){exp(1i*z)/(1+z^2)}

Now carry out the path integral. I’ll do it explicitly, but note that the contribution from the
first integral should be small:

> answer.approximate <-

+ integrate.contour(f,u1,u1dash) +

+ integrate.contour(f,u2,u2dash)

And compare with the analytical value:

> answer.exact <- pi/exp(1)

> abs(answer.approximate - answer.exact)

[1] 6.244969e-07

Now try the same thing but integrating over a triangle instead of a semicircle, using inte-

grate.segments(). Use a path P ′ with base from −R to +R along the real axis, closed by
two straight segments, one from +R to iR, the other from iR to −R:

> abs(integrate.segments(f,c(-R,R,1i*R))- answer.exact)

[1] 5.157772e-07

Observe how much better one can do by integrating over a big square instead:

> abs(integrate.segments(f,c(-R,R,R+1i*R, -R+1i*R))- answer.exact)

[1] 2.319341e-08

The residue theorem for function evaluation

If f(·) is holomorphic within C, Cauchy’s residue theorem states that

∮
C

f(z)

z − z0
= f(z0). (3)

Function residue() is a wrapper that takes a function f(z) and integrates f(z)/ (z − z0)
around a closed loop which encloses z0. We can test this numerically:

> f <- function(z){sin(z)}

> numerical <- residue(f,z0=1,r=1)

> exact <- sin(1)

> abs(numerical-exact)

[1] 3.91766e-18
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which is unreasonably accurate, IMO.
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