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Abstract

In this paper we provide a short tutorial illustrating the new functions in the pack-
age ggm that deal with ancestral, summary and ribbonless graphs. These are mixed
graphs (containing three types of edges) that are important because they capture the
modified independence structure after marginalization over and conditioning on nodes
of directed acyclic graphs. We provide functions to verify whether a mixed graph im-
plies that A independent of B given C for any disjoint sets of nodes, and to generate
maximal graphs inducing the same independence structure of non-maximal graphs.
Finally, we provide functions to decide on the Markov equivalence of two graphs with
the same node set but different type of edges.

1 Introduction and background

Graphical Markov models have become a part of the mainstream of statistical theory and
application in recent years. These models use graphs to represent conditional independen-
cies among sets of random variables. Nodes of the graph correspond to random variables
and edges to some type of conditional dependencies.

Directed acyclic graphs. In the literature of graphical models the two most used
classes of graphs are the directed acyclic graphs (DAGs) and the undirected graphs. DAGs
have been proven useful, among other things, to specify the data generating processes when
the variables satisfy an underlying partial ordering.

For instance, suppose that we have 4 observed variables Y , the ratio of systolic to
diastolic blood pressure, X the diastolic blood pressure, both on log scale, Z, the body
mass andW , the age, and that a possible generating process is the following linear recursive
regression model

Y = γY ZZ + γY UU + εY

X = γXWW + γXUU + εX

Z = γZVW + εZ

W = εW ; U = εU ;

where all the variables are mean-centered and the εs are zero mean, mutually independent
Gaussian random errors. In this model we assume that there exist a genetic factor U
influencing the ratio and levels of blood pressure.
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Then, this model can be represented by the DAG in Figure 1(a) with nodes associated
with the variables and edges, indicating the dependencies, represented by the regression
coefficients γs. From the graph it is seen for instance that the ratio of the two blood
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Figure 1: (a) A DAG; Y : (b) a regression graph.

pressures is directly influenced by body mass but not by age. Thus a consequence of the
model is that the variables must satisfy a set of conditional independencies: for example
the ratio of the blood pressure Y is independent of age W given body mass Z, written as
Y ⊥⊥ W |Z.

A remarkable result is that the independencies can be deduced from the graph alone,
without reference to the equations, by using a criterion called d-separation. In fact, in
the graph of Figure 1(a), the nodes Y and W are d-separated given Z as can be checked
using special graph algorithms included for example in packages gRain and ggm. For
more details on DAG models and their implementation in R see the extensive discussion
in Højsgaard et al. (2012).

Hidden variables and induced graphs The model has 4 observed variables but in-
cludes an unobserved variable, that is the genetic factor U . When U is hidden the model
becomes

Y = γY ZZ + ηY

X = γXWW + ηX

Z = γZVW + εZ

W = εW ;

with two correlated errors ηY = γY UU+εY and ηX = γXUU+εX , such that cov(ηY , ηX) =
ω)Y X. As a consequence the model is still a recursive model and the parameters have a
regression parameter interpretation, but contains some correlated residuals.

The induced model is said to be obtained after marginalization over U . In this model
some of the original independencies are lost, but we can observe the implied independencies
Y ⊥⊥ W |Z and X ⊥⊥ Z|W . Also it can be shown that in a DAG model defined for the 4
observed variables is impossible to represent such independencies. Therefore, we say that
DAG models are not stable under marginalization.

A mixed graph with arrows and arcs, shown in Figure 1(b) can however be used to
represent the induced independence model after marginalization over U . In this represen-
tation, beside the arrows, represented by the γs, we have the arc Y ≺ �X associated with
the (partial) correlation ωY X , .

The graph of Figure 1(b) belongs to a class of models called regression chain graph
models. This class generalizes the recursive generating process of DAGs by permitting
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joint responses, coupled in the graph by arcs, and thus appears an essential extension for
applications.

The class of regression graphs is however itself not stable under marginalization. For
instance, suppose that the generating process for the blood pressure data is defined by
the more general regression chain graph of Figure 2(a) where L is a further variable
representing a common hidden cause of systolic good pressure and body mass.

Then, after marginalization over L, the model can still be described by a a linear system
of equations with correlated residuals and can be represented by the mixed graph shown
in Figure 2(b). But the resulting graph is not a DAG nor a regression graph because
it contains the pair of variables (Y,Z) coupled both by a directed edge and by a path
composed by bi-directed arcs. Thus Y cannot be interpreted as a pure response to Z and
in addition Y and Z are not two joint responses.

X W

Y Z

L

X W

Y Z

(a) (b)

Figure 2: (a) A regression chain graph model; (b) the mixed graph obtained after marginal-
ization over L is not a regression chain graph.

Stable mixed graphs. The previous illustrations show that when there are unobserved
variables, DAG or regression chain graph models are no longer appropriate. The discussion
could be extended to situations where there are some selection variables, that is hidden
variables that are conditioned on.

This motivates the introduction of a more general class of mixed graphs, which contains
three types of edge, denoted by lines, , arrows, �, and arcs (bi-directed arrows),
≺ �. There are at least three known classes of mixed graphs without self loops that remain
in the same class, i.e. that are stable under marginalisation and conditioning. The largest
one is that of ribbonless graphs (RGs), (Sadeghi, 2012), defined as a modification of MC-
graphs (Koster, 2002). Then, there is the subclass of summary graphs (SGs) (Wermuth,
2011), and finally the smallest class of the ancestral graphs (AGs) (Richardson and Spirtes,
2002).

Four tasks of the current paper. In this paper, we focus on the implementation of
four important tasks performed on the class of mixed graphs in R:

1. Generating different types of stable mixed graphs after marginalisation and condi-
tioning.

2. Verifying whether an independency of form Y ⊥⊥ W |Z holds by using a separation
criterion called m-separation.

3. Generating a graph that induces the same independence model as an input mixed
graph such that the generated graph is maximal, i.e. each missing edge of the gen-
erated graph implies at least an independence statement.
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4. Verifying whether two graphs are Markov equivalent, i.e. they induce the same in-
dependencies, and whether there is a Markov equivalent graph of a different type to
an input graph of a specific type.

In the next section we give the details on how general mixed graphs are defined in pack-
age ggm. Next in each of the following sections we respectively deal with each of the
tasks described above. For each task we give a brief introduction at the beginning of its
corresponding section.

Package ggm. The previous tasks are illustrated by using a set of new functions intro-
duced into the R package ggm. Some of the functions generalize previous contributions
of ggm discussed in Marchetti (2006). Package ggm has been improved and it is now
more integrated with other contributed packages related to graph theory, such as graph,
igraph (Csardi and Nepusz, 2006), and gRbase (Dethlefsen and Højsgaard, 2005), which
are now required for representing and plotting graphs. Specifically, in addition to adja-
cency matrices, all the functions in the package now accept graphNEL and igraph objects
as input, as well as a new character string representation. A more detailed list of available
packages for graphical models can be found at CRAN Task View gRaphical Models in R
at http://cran.r-project.org/web/views/gR.html.

2 Defining mixed graphs in R

For a comprehensive discussion on the ways of defining a directed acyclic a graph, see
(Højsgaard et al., 2012). A mixed graph is a more general graph type with at most
three types of edge: directed, undirected and bi-directed, with possibly multiple edges of
different types connecting two nodes. In ggm we provide some special tools for mixed
graphs that are not present in other packages. Here we briefly illustrate some methods to
define mixed graphs and we plot them with a new function, plotGraph, which uses a Tk
GUI for basic interactive graph manipulation.

The first method is based on a generalization of the adjacency matrix. The second uses
a descriptive vector and is easy to use for small graphs. The third uses a special function
makeMG that allows to combine the directed, undirected and bi-directed components of a
mixed graph.

Adjacency matrices for mixed graphs. In the adjacency matrix of a mixed graph
we code the three different edges with a binary indicator: 1 for directed, 10 for undirected
and 100 for bi-directed edges. When there are multiple edges the codes are added.

Thus the adjacency matrix of a mixed graph H with node set N and edge set F is an
|N |×|N | matrix obtained as A = B+S+W by adding three matrices B = (bij), S = (sij)
and W = (wij) defined by

bij =

{
1, if and only if i �j in H;

0, otherwise.

sij = sji =

{
10, if and only if i j in H;

0, otherwise.

wij = wji =

{
100, if and only if i≺ �j in H;

0, otherwise.
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Notice that because of the symmetric nature of lines and arcs S and W are symmetric,
whereas B is not necessarily symmetric.

For instance the following graph is a mixed graph (Notice that this mixed graph is
not even ribbonless and hence of not much interest, and has been only introduced for
presentation purposes):

Q W

X

Y Z

that can be defined by the commands

> mg <- matrix(c( 0, 101, 0, 0, 110,

100, 0, 100, 0, 1,

0, 110, 0, 1, 0,

0, 0, 1, 0, 100,

110, 0, 0, 100, 0),

5,5, byrow = TRUE)

> N <- c("X","Y","Z","W","Q")

> dimnames(mg) <- list(N, N)

> mg

X Y Z W Q

X 0 101 0 0 110

Y 100 0 100 0 1

Z 0 110 0 1 0

W 0 0 1 0 100

Q 110 0 0 100 0

and plotted with plotGraph(mg).

Defining mixed graphs by using vectors. A more convenient way of defining small
mixed graphs is based on a simple vector coding as follows. The graph is defined by
a character vector of length 3f , where f = |F | is the number of edges, and the vector
contains a sequence of triples 〈type, label1, label2〉, where the type is the edge type
and label1 and label2 are the labels of the two nodes. The edge type accepts "a" for
an directed arrow , "b" for an arcs and "l" for a line. Notice that isolated nodes may not
be created by this method. For example, the vector representation of the previous mixed
graph is

> mgv <- c("b","X","Y","a","X","Y","l","X","Q",

"b","Q","X","a","Y","Q","b","Y","Z",

"a","Z","W","a","W","Z","b","W","Q")

Once again as in the DAG case we can use plotGraph(mgv) to plot the defined graph.
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Mixed graph using the function makeMG. Finally the adjacency matrix of a mixed
graph may be built up with the function makeMG. This function requires three arguments
dg, ug and bg, corresponding respectively to the three adjacency matrices B, S and W
composing the mixed graph. These may also be obtained by the constructor functions
DG and UG of ggm for directed and undirected graphs respectively. Thus for the previous
mixed graph we can issue the command

> mg <- makeMG(dg = DG(Y~X, Z~W, W~Z),

ug = UG(~ X*Q),

bg = UG(~ Y*X + X*Q + Q*W + Y*Z))

obtaining the same adjacency matrix (up to a permutation).

3 Generating stable mixed graphs

There are four general classes of stable mixed graphs.
Ribbonless graphs are mixed graphs without a specific set of subgraphs called rib-

bons. The lack of ribbons ensures that, for any RG, there is a DAG whose independence
structure, i.e. the set of all conditional independence statements that it induces, after
marginalisation over and conditioning on two disjoint subsets of its node set can be rep-
resented by the given RG. This is particularly essential as it shows that the independence
structures corresponding to RGs are probabilistic, that is there exists a probability distri-
bution P that is faithful with respect to any RG, i.e. for random vectors XA, XB, and XC

with probability distribution P , XA ⊥⊥ XB |XC if and only if 〈A,B |C〉 is in the induced
independence structure by the graph. This probability distribution is the marginal and
conditional of a probability distribution that is faithful to the generating DAG.

Summary graphs have neither arrowheads pointing to lines (i.e. ≺ �◦ or �◦
) nor directed cycles with all its arrows pointing towards one direction. Ancestral

graphs have these two constraint together with an additional constraint that these graphs
do not contain so-called bows, see Richardson and Spirtes (2002).

However, notice that for some ribbonless and summary graphs the corresponding
parametrisation is sometimes not available even in the case of standard joint Gaussian
distribution.

If we suppose that stable mixed graphs are only used to represent the independence
structure after marginalisation and conditioning, we can consider all types as equally
appropriate. However, each of the three types has been used in different context and for
different purposes. RGs have been introduced in order to straightforwardly deal with the
problem of finding a class of graphs that is closed under marginalisation and conditioning
by a simple process of deriving them from DAGs. SGs are used when the generating DAG
is known and to trace the effects in the sets of regressions as described above. AGs are
simple graphs, meaning that they do not contain multiple edges and the lack of bows
ensures that they satisfy many desirable statistical properties.

In addition, when one traces the effects in regression models with latent and selection
variables (as described in the introduction) ribbonless graphs are more alerting to possible
distortions (due to indirect effects) than summary graphs, and summary graphs are more
alerting than ancestral graphs; see also Wermuth and Cox (2008). For the exact definition
and a thorough discussion of all such graphs, see Sadeghi (2012).

Sadeghi (2012) also defines the algorithms generating stable mixed graphs of a specific
type for a given DAG or for a stable mixed graphs of the same type after marginalisation
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and conditioning such that they induce the marginal and conditional DAG-independence
structure. We implement these algorithms in this paper.

By “generating graphs” we mean applying the defined algorithms, e.g. those for gener-
ating stable mixed to graphs, in order to generate new graphs.

Functions to generate the three main types of stable mixed graphs. Three
main functions RG, SG, and AG are available to generate and plot ribbonless, summary, and
ancestral graphs from DAGs, using the algorithms in Sadeghi (2012). These algorithms
look for the paths with three nodes and two edges in the graph whose inner nodes are being
marginalized over or condition on, and generate appropriate edges between the endpoints.
These have two important properties: (a) they are well-defined in the sense that the
process can be performed in any order and produces always the same final graph; (b) the
generated graphs induce the modified independence structure after marginalization and
conditioning; see Sadeghi (2012) for more details.

The functions RG, SG, and AG all have three arguments: a the given input graph, M, the
marginalization set and C, the conditioning set. The graph may be of class "graphNEL"

or of class "igraph" or may be represented by a character vector, or by an adjacency
matrix, as explained in the previous sections. The sets M and C (default c()) must be
disjoint vectors of node labels, and they may possibly be empty sets. The output is always
the adjacency matrix of the generated graph. There are two additional logical arguments
showmat and plot to specify whether the adjacency matrix must be explicitly printed
(default TRUE) and the graph must be plotted (default FALSE).

Some examples. We start from a DAG defined in two ways, as an adjacency matrix
and as a character vector:

> ex <- matrix(c(0,1,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,1,0,1,0,1,0,

0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,1,0,0,

0,0,0,0,0,1,1,0),8,8,byrow=TRUE)

> exvec <- c("a",1,2,"a",2,3,"a",4,3,

"a",4,5,"a",4,7,"a",5,6,

"a",7,6,"a",8,6,"a",8,7)

> plotGraph(ex)

1

2

3

45

6 7

8

Then we define two disjoint sets M and C to marginalize over and condition on

> M <- c(5,8)

> C <- 3
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and we generate the ribbonless, summary and ancestral graphs from the DAG with the
associated plot.

> RG(ex, M, C, plot = TRUE)

1 2 4 6 7

1 0 1 0 0 0

2 0 0 10 0 0

4 0 10 0 1 1

6 0 0 0 0 100

7 0 0 0 101 0

1

24

6 7

The summary graph is plotted with dashed undirected edges instead of bi-directed edges:

> plotGraph(SG(ex,M,C), dashed = TRUE)

1 2 4 6 7

1 0 10 0 0 0

2 10 0 10 0 0

4 0 10 0 1 1

6 0 0 0 0 100

7 0 0 0 101 0

1

24

6 7

The induced ancestral graph is obtained from the DAG defined as a vector.

> AG(exvec,M,C,showmat=FALSE, plot=TRUE)

1

24

6 7
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4 Verifying m-separation

To globally verifying whether an independence statement of form A ⊥⊥ B ⊥⊥ C is implied by
a mixed graph we use a separation criterion called m-separation. This has been defined
in Sadeghi (2012) for the general class of loopless mixed graphs and is the same as the
m-separation criterion defined in Richardson and Spirtes (2002) for ancestral graphs. It
is also a generalisation of the d-separation criterion for DAGs (Pearl, 1988). This is a
graphical criterion that looks if the graph contains special paths connecting two sets A
and B and involving a third set C of the nodes. These special paths are said to be active
or m-connecting. For example, a directed path from a node in A to a node in B that does
not contain any node of C is m connecting A and B. However, if such a path intercepts a
node in C then A and B are said to be m-separated given C. However, this behaviour can
change if the path connecting A and B contains a collision node or a collider for short,
that is a node c where the edges meet head-to-head, like e.g., �c≺ or �c≺ �.

In general, a path is said to be m-connecting given C if all its collider nodes are in
C or in the set of ancestors of C, and all its non-collider nodes are outside C. For two
disjoint subsets of the node set A and B, we say that C m-separates A and B if there
is no m-connecting path between A and B given C. This separation criterion has been
implemented in R and the related function is provided in ggm.

Examples. The fundamental way to verify if a graphical model implies an independence
A ⊥⊥ B|C is to test whether the disjoint subsets A and B of the node set are m-separated
given a third set C, and this may be done with the function msep. Note that there is still
a function dSep in ggm for d-separation, although it is superseded by msep.

The function has 4 arguments, where the first is the graph a, in one of the forms
discussed before, and the other three are the disjoint sets A, B and C. For example, consider
the DAG of Figure 1(a):

> a <- DAG(Y ~ U + Z, X ~ U + W, Z ~ W)

Then, we see that Y and W are m-separated given Z:

> msep(a,"Y","W","Z")

[1] TRUE

and the same statement holds for the induced ancestral graph after marginalization over
U:

> b <- AG(a, M = "U")

> msep(b,"Y","W","Z")

[1] TRUE

This was expected because the induced ancestral graph respects all the m-separation
statements present in the DAG, and not involving the variable U.

As a more complex example, consider the following mixed graph,

> a <- makeMG(dg= DG(W ~ Z, Z ~ Y + X),

bg= UG(~ Y*Z))

> plotGraph(a)
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W Z

Y

X

Then, the two following statements verify whether X is m-separated from Y given X, and
whether X is m-separated from Y (given the empty set):

> msep(a,"X","Y","Z")

[1] FALSE

> msep(a,"X","Y")

[1] TRUE

In this example m-separation is equivalent to its special case, the d-separation criterion
for DAGs.

5 Verifying maximality

While for many subclasses of graphs a missing edge corresponds to some independence
statement, for the more complex classes of mixed graphs this is not necessarily true. A
graph where each of its missing edges is related to an independence statement is called
a maximal graph. For a more detailed discussion on maximality of graphs and graph-
theoretical conditions for maximal graphs, see Richardson and Spirtes (2002) and Sadeghi
and Lauritzen (2011). Sadeghi and Lauritzen (2011) also gave an algorithm for generat-
ing maximal ribbonless graphs that induce the same independence structure to an input
non-maximal ribbonless graph. This algorithm has been implemented here in ggm as
illustrated below.

Function for generating maximal graphs. Given a non-maximal graph, we can
obtain the adjacency matrix of a maximal graph that induces the same independence
statements with the function Max. This function uses the algorithm by Sadeghi (2011),
which is an extension of the implicit algorithm presented in Richardson and Spirtes (2002).
The related functions MAG, MSG, and MRG, are just handy wrappers to obtain maximal AGs,
SGs and AGs, respectively. For example,

> H <- matrix(c(0 ,100, 1, 0,

100,0 ,100, 0,

0 ,100, 0,100,

0, 1 ,100, 0),4,4)

> plotGraph(H)

1

2 3

4
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is a mixed non-maximal graph, with the missing edge between nodes 1 and 4 that is not
associated with any independence statement. Its associated maximal graph is obtained by

> Max(H)

1 2 3 4

1 0 100 0 100

2 100 0 100 1

3 1 100 0 100

4 100 0 100 0

> plotGraph(Max(H))

1

2 3

4

As the graph H is an ancestral graph (as may be verified by the function isAG), we obtain
the same result with

> MAG(H)

1 2 3 4

1 0 100 0 100

2 100 0 100 1

3 1 100 0 100

4 100 0 100 0

6 Verifying Markov equivalence

Two graphical models are said to be Markov equivalent when their associated graphs,
although nonidentical, imply the same independence structure, that is the same set of
independence statements. Thus two Markov equivalent models cannot be discriminated
on the basis of statistical tests of independence, even for arbitrary large samples. For
instance, the two directed acyclic graphs models X≺ U �Y and X≺ U≺ Y both
imply the same single independence statement between X and Y conditionally on U .

Sometimes, we can check whether graphs of different types are Markov equivalent. For
instance the DAGX �U≺ Y is Markov equivalent to the bi-directed graphX≺ �U≺ �Z.

Markov equivalent models may be useful in applications because (a) the may suggest
alternative interpretations of a given well-fitting model or (b) on the basis of the equiv-
alence one can choose a simpler fitting algorithm. For instance, the previous bi-directed
graph model may be fitted, using the Markov equivalent DAG, in terms of a sequence of
univariate regressions.

In the literature several problems related to Markov equivalences have been discussed.
These include (a) verifying the Markov equivalence of given graphs, (b) presenting con-
ditions under which a graph of a specific type can be Markov equivalent to a graph of
another type, and (c) providing algorithms for generating Markov equivalent graphs of a
certain type from a given graph.
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Functions for testing Markov equivalences. The function MarkEqRcg tests whether
two regression chain graphs are Markov equivalent. This function simply finds the skeleton
and all unshielded collider V-configurations in both graphs and tests whether they are
identical, see Wermuth and Sadeghi (2012). The arguments of this function are the two
graphs a and b in one of the allowed forms. For example,

> H1 = makeMG(dg = DAG(`4` ~ `1`, `5` ~ `3`),

bg = UG(~ `1`*`2` + `2`*`3` + `4`*`5`))

> H2 = makeMG(dg = DAG(`4` ~ `1`, `5`~ `3`,

`2` ~ `1` + `3`),

bg = UG(~ `4`*`5`))

> H3 = DAG(`4`~`1`, `5`~`3` + `4`,`2`~`1` + `3`)

> plotGraph(H1); plotGraph(H2); plotGraph(H3)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

We can now verify Markov equivalence as follows

> MarkEqRcg(H1,H2)

[1] TRUE

> MarkEqRcg(H1,H3)

[1] FALSE

> MarkEqRcg(H2,H3)

[1] FALSE

To test Markov equivalence for maximal ancestral graphs the algorithm is computationally
much more demanding (see Ali and Richardson (2004)) and, for this purpose, the function
MarkEqMag has been provided. Of course, one can use this function for Markov equivalence
of regression chain graphs (which are a subclass of MAGs). For example,

> A1<- makeMG(dg = DG(`4`~`2`),

bg = UG(~ `1`*`2` + `2`*`3` + `3`*`4`))

> A2<- makeMG(dg = DG(`4`~`2`, `2`~`1`),

bg = UG(~ `2`*`3` + `3`*`4`))

> A3<- makeMG(dg = DG(`4`~`2`, `2`~`1`, `3`~`1`),

bg = UG(~ `3`*`4`))

> plotGraph(A1); plotGraph(A2); plotGraph(A3)
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1

2

3

4

1

2

3

4

1

2

3

4

> MarkEqMag(H1,H2)

[1] TRUE

> MarkEqMag(H1,H3)

[1] FALSE

> MarkEqMag(H2,H3)

[1] FALSE

Functions for generating Markov equivalent graphs of a specific type. Some-
times is important to verify if a given graph is capable of being Markov equivalent to a
graph of a specific class of graphs (such as DAGs, undirected graphs, or bidirected graphs),
and if so, to obtain as a result such a graph. The functions RepMarDAG, RepMarUG, and
RepMarBG do this for DAGs, undirected graphs, or bidirected graphs, respectively. For as-
sociated conditions and algorithms, see Sadeghi (2011). For example, given the following
graph

> H <- matrix(c( 0,10, 0, 0,

10, 0, 0, 0,

0, 1, 0,100,

0, 0,100, 0),4,4)

> plotGraph(H)

1 2 3 4

we can see that it is Markov equivalent to a DAG, by

> RepMarDAG(H)

$verify

[1] TRUE

$amat

1 2 3 4

1 0 1 0 0

2 0 0 1 0

3 0 0 0 0

4 0 0 1 0

> plotGraph(RepMarDAG(H))
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1 2 3 4

On the other hand it is not Markov equivalent to an undirected graph or to a bidirected
graph.

> RepMarUG(H)

$verify

[1] FALSE

$amat

[1] NA

> RepMarBG(H)

$verify

[1] FALSE

$amat

[1] NA
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