
A Short Introduction to the gpuR Package

Dr. Charles Determan Jr. PhD∗

January 5, 2017

1 Introduction

GPUs (Graphic Processing Units) were originally developed to perform graphic render-
ing and commonly referred to in the comuting gaming world. These devices are also
able to be applied to numerical operations in parallel. Although there are a few different
vendors, the two primary competitors are AMD and NVIDIA.

NVIDIA GPUs depend upon the proprietary CUDA framework whereas AMD GPUs
utilize the open source OpenCL framework. The upside of OpenCL is that ’kernels’ are
able to used on any GPU whereas CUDA kernels can only be used on NVIDIA GPUs.
It is worth noting, however, that CUDA tends to edge out OpenCL performance likely a
result of the highly specific framework to the NVIDIA GPUs.

That said, programming either framework is often difficult for programmers unac-
customed to working with such a low-level interface. Creating bindings for high-level
programming languages (such as R) make using GPUs much more accessible to a broader
audience.

Several R packages have been developed including gputools, cudaBayesreg, HiPLARM,
HiPLARb, and gmatrix. However, all of the packages depend upon a CUDA backend and
therefore restrict the using to only using NVIDIA GPUs. The novelty of this package is
the use of the ViennaCL library (http://viennacl.sourceforge.net/) which has been cove-
niently been repackaged in the RViennaCL package to be used in other R packages. This
allows the user to leverage the auto-tuned OpenCL kernels of the ViennaCL library on
any GPU. It also allows for a CUDA backend for those who in fact have a NVIDIA GPU
for improved performance, which will be provided in a companion gpuRcuda package.

Of the aforementioned packages, most contain a very limited set of functions avail-
able to the R user within the packages. The most extensive being the gmatrix package
which contains most linear algebra operations. All of the packages (with the exception
of gmatrix) don’t store the data on the GPU. As such, there is the overhead of transferring
data back and forth between the device and host. Similar to gmatrix, this package utilizes
S4 classes to store an external pointer to the data on the GPU which mirror the base
matrix and vector classes. However, given the interactive nature of R programming and

∗cdetermanjr@gmail.com

1

http://cran.fhcrc.org/web/packages/gputools/index.html
http://cran.fhcrc.org/web/packages/cudaBayesreg/index.html
http://cran.fhcrc.org/web/packages/HiPLARM/index.html
http://cran.fhcrc.org/web/packages/HiPLARb/index.html
http://cran.fhcrc.org/web/packages/gmatrix/index.html
https://github.com/cdeterman/RViennaCL
https://github.com/cdeterman/gpuRcuda

the limited RAM available on GPU’s this package provides intermediate classes that re-
move the object from GPU RAM to allow objects to be stored on the CPU but still utilize
the GPU as needed.

2 Install

Install gpuR using

Stable version
install.packages("gpuR")

If a user is interested in using the current development version they should install
directly from my github account.

Dev version
devtools::install_github("cdeterman/gpuR", ref = "develop")

Note this may require install of the RViennaCL from my github
if updates have been made
#devtools::install_github("cdeterman/RViennaCL")

3 Getting Help

If you find an error/bug while using this package I would like to know about it. Like-
wise, if there is a method you think would be useful for others feel free to request it’s
addition (or provide a contribution yourself to be added). Please submit the all such
reports and requests on my github Issues.

2

https://github.com/cdeterman/gpuR/issues

4 Basic Use with gpuMatrix

gpuR has most basic linear algebra operations. The user simply needs to create a gpuMa-
trix object and the GPU methods will be used. Here is a minimal example demonstrating
typical matrix multiplication.

library("gpuR")

verify you have valid GPUs
detectGPUs()

create gpuMatrix and multiply
set.seed(123)
gpuA <- gpuMatrix(rnorm(16), nrow=4, ncol=4)
gpuB <- gpuA %*% gpuA

Most linear algebra methods have been created to be executed for the gpuMatrix and
gpuVector objects. These methods include basic Arithmetic functions %*%, +, -, *, /, t,
crossprod, tcrossprod, colMeans, colSums, rowMean, and rowSums. Math functions in-
clude sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, exp, log, log10, exp, abs, max, and
min. Additional operations include some linear algebra routines such as cov (Pearson Co-
variance) and eigen. A few ’distance’ routines have also been added with the dist and
distance (for pairwise) functions. These currently include ’Euclidean’ and ’SqEuclidean’
methods.

The objects may also be created specifying data type including int, float, and dou-
ble. Float type was included to provide a smaller memory footprint and also increased
throughput if the increased accuracy of double is not required.

Both the gpuMatrix and vclMatrix objects return a pointer to the data. Given that
working with GPU’s implies that you are working with larger datasets, this prevents
R from making unneccessary copies. However, this does require the user to exercise
caution as any change made to a ’copy’ (e.g. gpuB <- gpuA) will result in changes to the
original object and all others pointing to it as well.

5 vclMatrix Class

The vclMatrix class was created to allow the user to put data directly on the GPU once and
not need to continually push data back and forth between the host and device. Therefore,
if multiple processes are to be applied to a given matrix, there will be significant savings
by using vclMatrix objects. It is important to remember though, different GPU’s have
different amounts of RAM. The interactive nature of R often has many objects existing
simultaenously where you may exceed your GPU’s RAM. As such, the gpuMatrix class is
provided.

3

6 ’block’ & ’slice’ object

Sometimes it is useful to only refer to a subset of a matrix and apply some operations.
This has been accomplished by providing the block and slice methods for matrix and
vector classes respectively. The resulting object is a child class of the parent object (e.g.
gpuMatrixBlock from gpuMatrix). As such, nearly all methods defined for the parent
objects are also defined for the child class.

create gpuMatrix
set.seed(123)
gpuA <- gpuMatrix(rnorm(16), nrow=4, ncol=4)

create block omitting the 1st row
gpuB <- block(gpuA,

rowStart = 2L, rowEnd = 4L,
colStart = 1L, colEnd = 4L)

The resulting object is a reference to the parent objects elements to avoid memory
duplication. As such, any changes to the ’block’ or ’slice’ object will alter the parent
elements. If the user wishes to make these objects distinct, they should use the deepcopy
function.

7 GPU Memory Management

This package has been written to utilize the capabilities provided by Rcpp. As such, the
pointers referenced in the objects herein are handled by the ’XPtr’ object. Once the object
is deleted in the R session and the garbage collector has run the GPU memory will be
freed.

It is important for the user to respect the rate at which the R garbage collector is
called. It has been shown that when some of these functions are called repeatedly in a
loop the GPU processing goes too rapidly for the garbage collector to be called to release
the memory resulting in the GPU becoming filled. Explicitly calling gc() within loops
following rm of the temporary object should alleviate problems such as these.

4

http://cran.fhcrc.org/web/packages/Rcpp/index.html

8 Contributing Back

Given the broad use for this package (i.e. many different GPUs) it would be useful if
you could report success cases. A curated list of tested platforms would be valuable for
future users. Please see report your Operating System, OpenCL Platform (can be seen
with platformInfo), and your GPU(s) also on my gitter Tested GPUs page.

9 Crowd-source Testing

As with the above statements, there a many architecture possibilities that this package
’should’ run on. That said, it is impossible for me to have access to all the different hard-
ware. As such, I am hoping that users can continually test this package as well.

1. Test current release The simplest approach is to test the current CRAN version. Simply
download the tar file from CRAN archive for gpuR. Then you can just run:

R CMD check gpuR_version.

NOTE - you will likely receive 3 NOTES (checking repository dependencies, package
size, and pandoc). You also will likely see a WARNING referring to the Date field being
old. You can safely ignore these results. Any error should be reported to my github Is-
sues. Please include the OS, OpenCL Platform, & GPU(s). Ideally you can at least report
which test is failing if returned by R CMD check.

2. Test development version. This requires a little bit more effort on the users part.
First, you need to to clone my development branch from my git repository.

git clone -b develop https://github.com/cdeterman/gpuR.git

Then you can enter the gpuR directory and run devtools::test().

Ideally, users will try to at least diagnose at least which function the error is originating
(or sequence of functions). It is important that if the user cannot solve the bug that it is
reproducible so that I (or others) are able to try to approach the problem.

5

https://gitter.im/cdeterman/gpuR/Tested_GPUs
http://cran.fhcrc.org/web/packages/gpuR/index.html
https://github.com/cdeterman/gpuR/issues
https://github.com/cdeterman/gpuR/issues

	1 Introduction
	2 Install
	3 Getting Help
	4 Basic Use with gpuMatrix
	5 vclMatrix Class
	6 'block' & 'slice' object
	7 GPU Memory Management
	8 Contributing Back
	9 Crowd-source Testing

