
Measuring classification performance: the hmeasure

package.

C. Anagnostopoulos, canagnos@imperial.ac.uk,
D.J. Hand, d.j.hand@imperial.ac.uk,
N.M. Adams n.adams@imperial.ac.uk

Department of Mathematics, South Kensington Campus,
Imperial College London, London SW7 2AZ

July 21, 2012

Abstract

The ubiquity of binary classification problems has given rise to a prolific literature
dedicated to the proposal of novel classification methods, as well as the incremental
improvement of existing ones, that largely relies on effective performance metrics. The
inherent trade-off between false positives and false negatives however complicates any
attempt at providing a scalar summary of classification performance. Several measures
have been proposed in the literature to overcome this difficulty, prominent among which
is the Area Under the ROC Curve (AUC), implementations of which are widely avail-
able. The AUC has recently come under criticism for handling the aforementioned
tradeoff in a fundamentally incoherent manner, in the sense that it treats the relative
severities of misclassifications differently when different classifiers are used. A coherent
alternative was recently proposed, known as the H measure, that can optionally accom-
modate expert knowledge regarding misclassification costs, whenever that is available.
The hmeasure package computes and reports the H measure alongside most commonly
used alternatives, including the AUC. It also provides convenient plotting routines that
yield insights into the differences and similarities between the various metrics.

1 Introduction

A binary classification rule is a method that assigns a class y ∈ {0, 1} (or, respectively,
y ∈ {negative,positive}) to an object, on the basis of its description x ∈ X . This extremely
flexible formulation means that a wide variety of learning tasks encountered in practice are
possible to express as a classification problem. Accordingly, this has led to a vast literature on
the topic. Given the exponential growth of classification methods, and the growing scientific
and economic impact of classification technology (ranging from fraud detection to medical
diagnosis), it is hard to understate the key role of appropriate measures of performance to
enable easy, but statistically sound, comparisons across methods and datasets.

Measures of performance need to obey several criteria: first, they must coherently capture
the aspect of performance of interest; second, they must be intuitive enough to become
widely used, so that the same measures are consistently reported from researchers, enabling
community-wide conclusions to be drawn; third, they must be computationally tractable, to

1

match the rapid growth in the scale of modern data collection; finally, they must be simple
to report as a single number for each method-dataset combination, so that the practical
need to perform comparisons across various classifiers and datasets may be addressed.

In the field of classification, the study of measures of performance has matured over the
past two decades in response to these, and other concerns, and has converged to the use of
any of a small selection of inter-related measures, usually expressed as weighted combinations
of False Positive and False Negative Rates, or averaged versions thereof. This reflects the fact
that binary classification performance inherently involves two largely antagonistic objectives:
minimising the number of False Positives (e.g., occurrences where a disease is mistakenly
diagnosed) as well as that of False Negatives (e.g., occurrences where the presence of a disease
is missed). Classifiers are in fact typically able to trade-off one type of misclassification for
another, depending on the preferences of the end user. This trade-off is often represented
by a one-dimensional curve known as the Receiver Operating Characteristic (ROC) curve
(see Section 2). Significant effort has been put into reducing this curve into a single number
that would lend itself more easily to performance comparisons across classifiers. The most
popular such scalar summary of the ROC curve is the Area Under the ROC Curve (AUC),
currently employed by over 6000 journal papers per year (source: Web of Science).

Nevertheless, the AUC has recently come under criticism [6, 7] for handling the two types
of misclassifications in an incoherent fashion. In particular, it was shown to be equivalent
to averaging over the relative costs of misclassification in a classifier-dependent manner,
so that in any given performance comparison one type of misclassification may be deemed
more important for classifier A than for classifier B. This is nonsensical as the relative
misclassification cost is a property of the problem domain, not of the classification method
used. To claim that the AUC is incoherent can be compared to a hypothetical announcement
that distance travelled per second is not the right way to measure speed after all, so that we
must now reconsider all past Olympic gold medals. Although there is still some controversy
as to whether the AUC can be defended after all on a basis other than costs, parts of
the literature have responded by gradually shifting towards a recently proposed coherent,
uncontroversial alternative known as the H measure.

The hmeasure package reports most popular measures of classification performance,
including the AUC and H measure, for one or more binary classifiers. This paper illustrates
the use of the package, by way of a tutorial centered around a worked example, also employed
in the hmeasure package, which involves the Pima dataset from the MASS library.

2 Misclassification counts

In binary classification, the objective is to design a rule that assigns objects to one of 2
classes, often referred to as positive (i.e., cases, often encoded as 1s) and negative (non-
cases, or 0s), on the basis of descriptive vectors of those objects. For instance, we may
attempt to detect the presence of a certain medical condition on the basis of a set of medical
tests. Rules are sometimes wholly designed on the basis of human expertise (e.g., by a
doctor), but the most typical scenario of interest is that of supervised classification, where
rules are automatically trained to recognise objects of each class using a training set of data
which includes both descriptive vectors and true classes for a sample of objects. The training
algorithm itself may consist in heuristics, statistical estimation techniques, machine learning
principles, or a combination thereof. The classifier is then deployed on a test dataset of n
descriptive vectors, where the real classes of the objects in question are concealed from the

2

classifier and used only to measure performance. In this work we will only be concerned
with this latter issue of assessing performance using a test dataset.

2.1 Misclassification counts

The simplest performance metrics rely on comparing the classifier’s predicted classes ŷ1, . . . , ŷn
for the n test datapoints with their true labels, y1, . . . , yn. The primary statistics of interest
are the so-called misclassification counts, i.e., the number of False Negatives (FN) and False
Positives (FP). These are often reported alongside their complements, the number of True
Negatives (TN) and True Positives (TP), in a confusion matrix :

Predicted
ŷi = 1 ŷi = 0

Actual
yi = 1 TP FN
yi = 0 FP TN

A scalar summary of the above is often needed, for instance, to enable comparisons across
classifiers. The most widely used such summary is the Error Rate (ER), which is simply
the total misclassification count divided by the number of examples, i.e., ER = FN+FP

n =
FN+FP

FN+FP+TN+TP . There are however several others, as we now proceed to illustrate. Consider
the Pima dataset, which we separate to a training and a test dataset:

> library(MASS); library(class); data(Pima.te); library(hmeasure)

> n <- dim(Pima.te)[1]; ntrain <- floor(2*n/3); ntest <- n-ntrain

> pima.train <- Pima.te[seq(1,n,3),]

> pima.test <- Pima.te[-seq(1,n,3),]

This stores the training and test data in a matrix format, where the last, 8th column, called
“type”, is the class label, given as a factor with two levels:

> true.class<-pima.test[,8]; str(true.class)

Factor w/ 2 levels "No","Yes": 1 1 2 2 1 1 1 1 1 1 ...

We then consider the Linear Discriminant Analysis (LDA) classifier implemented in R as
part of the class package. We first train the classifier using the training data:

> pima.lda <- lda(formula=type~., data=pima.train)

We then apply it to obtain predicted classes for the test dataset:

> out.lda <- predict(pima.lda,newdata=pima.test); class.lda <- out.lda$class;

We may obtain the confusion matrix for these predictions using the function misclassCounts,
which is part of the hmeasure package:

> lda.counts <- misclassCounts(class.lda,true.class); lda.counts$conf.matrix

pred.1 pred.0

actual.1 50 24

actual.0 25 122

3

Note that misclassCounts() is flexible with regards to the data type of the predicted class
label. The default input is a numeric array with levels 0 and 1, but it also accepts numeric,
logicals, and factors, with the following conventions:

• numeric vector with values a and b: minimum(a, b)→ “0”, maximum(a, b)→ “1”

• logical vector: TRUE → “1”,FALSE → “0”,

• factor levels: alphabetically, e.g., “male”→ “1”, “female”→ “0”,

The latter convention ensures that "Yes"/"No" are replaced with 1s and 0s respectively:

> relabel(c("Yes","No","No"))

[1] 1 0 0

The alphabetical ordering is of course arbitrary otherwise. In particular, the popular choice
of labels "Cases"/"Non-cases" will in this case be mapped to 0 and 1 respectively, whereas
the other way round is arguably more intuitive. To avoid confusion, the function imple-
menting the conversion, relabel(), outputs a warning message:

Class labels have been switched from (No,Yes) to (0,1)

This function additionally computes several other misclassification-based statistics:

> print(lda.counts$metrics,digits=3)

ER Sens Spec Precision Recall TPR FPR F Youden

1 0.222 0.676 0.83 0.667 0.676 0.676 0.17 0.671 0.506

ER is the Error Rate described earlier. The True Positive Rate (TPR) and the False Positive
Rate (FPR) constitute an alternative representation of the confusion matrix, and are given
respectively by the ratio of TPs to the total number of positive examples, and the ratio of FPs
to the total number of negative examples, TPR = TP/(TP + FN),FPR = FP/(TN + FP).
An analogous pair of summary statistics is Sensitivity (Sens, same as TPR) versus Specificity
(Spec, given by 1− FPR), and yet another such pair is Precision (TP divided by the total
number of predicted positives, TP/(TP + FP)) versus Recall (same as Sensitivity, or TPR).
Finally, the F measure and the Youden index are scalar measures that attempt to take a
more balanced view of the two different objectives than ER does. The former is given by
the harmonic mean of Precision and Recall, and the latter by Sensitivity + Specificity− 1.

2.2 Scores and thresholds

The above statistics are based exclusively on a set of predicted labels. However, in most
classifiers, predicted labels are in fact obtained by a two-stage process. Initially, the de-
scriptive vector x is mapped to a scalar score s(x) ∈ R. This score is then compared to a
threshold, t, to obtain the class label:

Classifier(t): ŷ(x) =

{
1, if s(x) > t

0, if s(x) ≤ t.
(1)

The threshold allows the end user to ‘tune’ a classifier in order to trade-off FPs for FNs,
or vice versa. An extreme example is where one classifies all objects as positive (t = −∞)

4

regardless of their description, enabling one to never “miss a case” (FN=0), at the cost of
a large number of “false alarms” (high FP). Conversely, for t = ∞, no objects will ever be
classified as positive, forcing FP=0 at the cost of incurring a maximum number of FNs.

Such classifiers are known as scoring classifiers, and they form the prevalent type in
the supervised classification literature. A particular special case thereof are probabilistic
classifiers, where the score is an estimate of the posterior probability of class 1 membership,
s(x) = p̂(‘Yes’ | x). The lda function is an implementation of a probabilistic classifier, and
reports the scores in its output:

> out.lda$posterior[1:3,]

No Yes

2 0.9780078 0.02199222

3 0.9738716 0.02612837

5 0.3824495 0.61755047

Here the score may be found in the second column, which corresponds to the probability
of class 1. The LDA classifier outputs the class label with maximum probability. In the
framework above, this corresponds to a threshold of 0.5:

> scores.lda <- out.lda$posterior[,2];

> all((scores.lda > 0.5)== (class.lda=="Yes"))

[1] TRUE

We may alter the choice of threshold to assess the effect this has on the trade-off between
FPs and FNs. Setting t = 0.3 produces an improvement in FNs (from 11 to 3) at the expense
of a deterioration in FPs (from 7 to 12), or, as more commonly reported, an improvement
in sensitivity (from 0.667 to 0.909), for a deterioration in specificity (from 0.91 to 0.846):

> lda.counts.T03 <- misclassCounts(scores.lda>0.3,true.class)

> lda.counts.T03$conf.matrix

pred.1 pred.0

actual.1 64 10

actual.0 36 111

> lda.counts.T03$metrics[c('Sens','Spec')]

Sens Spec

1 0.8648649 0.755102

2.3 ROC curves

The above discussion establishes that the performance of any given scoring classifier in terms
of misclassification counts (and hence also in terms of ER) varies with t, and consequently,
to evaluate such a classifier, or compare two or more such classifiers, one needs to either
appropriately fix t, or somehow consider a suitable range of its values. Several solutions
have been produced in the literature to address this difficulty (see [11] for a review). Some
of these propose a certain setting for t and then employ misclassification counts as the
measure of performance. For instance, as explained earlier, what is commonly reported as

5

‘Error Rate’, is in fact just ER(t̃) where t̃ is whatever default value is employed by the
classifier implementation in question. More sophisticated approaches attempt to take a
balanced view across several, or even all possible settings for t. We review both types of
metrics in this section.

The most common graphical representation of this trade-off is the Receiver Operating
Characteristic (ROC) curve, which is a plot of the Sensitivity (i.e., TPR) against 1- Speci-
ficity (i.e., FPR), as the threshold is varied from −∞ to ∞. Computing the ROC curve
only requires the scores, and does not actually involve iterating over different values of t
(see [6] for details). This is implemented in the HMeasure function, and displayed by call-
ing plotROC on its output. To make the discussion more interesting we consider a second
classifier, the k-Nearest-Neighbours (k-NN) classifier, available in the class package:

> class.knn <- knn(train=pima.train[,-8], test=pima.test[,-8],

+ cl=pima.train$type, k=9, prob=TRUE, use.all=TRUE)

> scores.knn <- attr(class.knn,"prob")

> scores.knn[class.knn=="No"] <- 1-scores.knn[class.knn=="No"]

The last line of code is necessary as k-NN utilises a different convention for scores, outputing
by default the score of the most probable class, rather than the score of class 1. The
HMeasure function takes as input the set of true labels (following the same conventions as
misclassCounts(), see Section 2.1), as well as a data frame of scores, where each column
is a classifier:

> scores <- data.frame(LDA=scores.lda,kNN=scores.knn)

> results <- HMeasure(true.class,scores)

> class(results)

[1] "hmeasure"

The output is an object of class hmeasure, whose main fields are a set of summary metrics
including statistics based on misclassification counts (see Section 2.1), as well as aggregate
metrics (see Section 2.4). It additionally contains information necessary for plotting pur-
poses. In particular, calling the function plotROC() on an hmeasure object will produce,
by default, the ROC curves of the classifiers in question. Figure 1 is an example of this for
the LDA and k-NN classifiers on the Pima data.

We note in Figure 1 that the ROC curve of LDA lies mostly above that of k-NN. Had
it lied strictly above it, then we would have been able to conclude that for any value of the
threshold, LDA fared better for this dataset in terms of both FNs and FPs than k-NN. This
result is also called strict dominance, and it is the strongest possible result of a classifier
comparison. For instance, the ideal classifier would produce a ROC curve lying above all
possbile ROC curves, and consisting in the line segments (0, 0)→ (0, 1)→ (1, 1), as the (0, 1)
point represents perfect classification. As things stand, LDA is seen to fare better than k-
NN for most, but not all values of the threshold. The diagonal represents the performance
of a trivial classifier, that randomly allocates classes to objects. Although it is possible in
practice for a classifier to underperform the trivial classifier, it is customary in such cases
to switch the sign of the scores and therefore ‘flip’ the ROC curve about the diagonal to
produce a superior classifier. This is done automatically in the HMeasure function, and the
following warning is produced:

> ROC curve of kNN mostly lying under the diagonal. Switching scores.

6

> plotROC(results)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC (continuous) and ROCH (dotted)

TPR (1−F0)

F
P

R
 (

1−
F

1)

trivial
LDA
kNN

Figure 1: Code fragment producing an ROC curve for the LDA classifier. Providing the
scores as a data frame allows us to name the method in question.

Finally, the dotted lines in Figure 1 represent the convex hull of the ROC curve (ROCH) for
each classifier, i.e., the least convex curve that lies above its ROC curve. This representation
is motivated by the fact that it is possible to modify any given classifier in a way that
‘convexifies’ its ROC curve [13].

2.4 Aggregate measures

We now turn our attention to aggregate measures, defined as functions of the ROC curve’s
values, at single or multiple locations. These are compactly reported as follows:

> summary(results)

H Gini AUC AUCH KS MER MWL

LDA 0.4802968 0.7304652 0.8652326 0.8816878 0.6335723 0.1990950 0.1632235

kNN 0.3707186 0.6571980 0.8285990 0.8317705 0.4920941 0.2217195 0.2262443

Spec.Sens95 Sens.Spec95

LDA 0.5306122 0.4189189

kNN 0.5959751 0.4218147

We define the abbreviations here, and give more detail in the rest of the section:

• H: the H-measure (see Section 2.6)

• Gini: the Gini coefficient

• AUC: the Area Under the ROC Curve

7

• AUCH: the Area Under the convex Hull of the ROC Curve

• KS: the Kolmogorov-Smirnoff statistic

• MER: the Minimum Error Rate

• MWL: the Minimum cost-Weighted Error Rate

• Spec.Sens95: Specificity when Sensitivity is held fixed at 95%

• Spec.Sens95: Sensitivity when Specificity is held fixed at 95%

In this section we explain how each of these metrics is computed. Note that overriding
the default value of show.all in the summary() method additionally reports the metrics
computed by misclasscounts() which we described earlier in Section 2.1:

> summary(results,show.all=TRUE)

H Gini AUC AUCH KS MER MWL

LDA 0.4802968 0.7304652 0.8652326 0.8816878 0.6335723 0.1990950 0.1632235

kNN 0.3707186 0.6571980 0.8285990 0.8317705 0.4920941 0.2217195 0.2262443

Spec.Sens95 Sens.Spec95 ER Sens Spec Precision Recall

LDA 0.5306122 0.4189189 0.2217195 0.6756757 0.829932 0.6666667 0.6756757

kNN 0.5959751 0.4218147 0.2262443 0.6621622 0.829932 0.6621622 0.6621622

TPR FPR F Youden TP FP TN FN

LDA 0.6756757 0.170068 0.6711409 0.5056076 50 25 122 24

kNN 0.6621622 0.170068 0.6621622 0.4920941 49 25 122 25

These latter metrics all rely on a single pre-specified threshold value. The default value is
t = 0.5, but the user may easily specify a different threshold as follows:

> HMeasure(true.class,scores,threshold=0.3)$metrics[c('Sens','Spec')]

Sens Spec

LDA 0.8648649 0.7551020

kNN 0.8108108 0.6258503

Separate thresholds per classifier may be provided instead. E.g., the above agrees with

> HMeasure(true.class,scores,threshold=c(0.3,0.3))$metrics[c('Sens','Spec')]

Sens Spec

LDA 0.8648649 0.7551020

kNN 0.8108108 0.6258503

but not with

> HMeasure(true.class,scores,threshold=c(0.5,0.3))$metrics[c('Sens','Spec')]

Sens Spec

LDA 0.6756757 0.8299320

kNN 0.8108108 0.6258503

8

It should be noted that this feature of user-specified thresholds is introduced for reasons of
completeness, transparency and experimentation only. It is generally not advised to directly
select values for the threshold – this is discussed in Section 2.6. To relieve the user entirely
of having to worry about whether the default choice of threshold t̃ = 0.5 is suitable, we
additionally report the Minimum Error Rate (MER), as an alternative to ER = ER(t̃),
which corresponds to the value of t that achieves the minimum ER(t) over the test dataset.
See Section 2.6 for further details on this measure.

Error rate considers FPs as important as FNs. This may not be suitable in certain
application areas, such as medical diagnosis, or fraud detection. A popular alternative in
such domains is to fix specificity (resp., sensitivity) at a desired level, often set at 0.95, and
only report the achievable sensitivity (resp. specificity) at that level. These measures can
be read off the ROC curve directly, and are also conveniently reported as Sens.Spec95 and
Spec.Sens95 respectively in the Hmeasure output, for a default setting of 0.95. The user
may easily specify one or more such levels as follows:

> summary(HMeasure(true.class,scores,level=c(0.95,0.99)))

H Gini AUC AUCH KS MER MWL

LDA 0.4802968 0.7304652 0.8652326 0.8816878 0.6335723 0.1990950 0.1632235

kNN 0.3707186 0.6571980 0.8285990 0.8317705 0.4920941 0.2217195 0.2262443

Spec.Sens95 Spec.Sens99 Sens.Spec95 Sens.Spec99

LDA 0.5306122 0.18367347 0.4189189 0.02702703

kNN 0.5959751 0.04068027 0.4218147 0.31324324

An alternative metric that seeks to jointly consider specificity and sensitivity is the
Kolmogorov-Smirnoff (KS) statistic, which corresponds to the maximum value their sum
takes as the threshold is varied. This also attains an intuitive graphical interpretation as
the maximum vertical distance between the ROC and the diagonal.

The above metrics all focus on single locations on the ROC curve, i.e., single choices
of thresholds. Other metrics attempt to aggregate over several values of the threshold
instead. The most widespread such measure is the Area Under the ROC Curve (AUC), or
its variation the Area Under the ROCH Curve (AUCH). The AUC has the intuitive property
that if the ROC of one classifier lies strictly above that of another, the rankings of their
respective AUCs will reflect this. However, the converse does not hold, as ROC curves will
more often than not cross. In such cases, AUC has been criticised for considering all values
of sensitivity as ‘equally likely’, an assumption that is untenable on several grounds [6]. The
AUC normally takes values between 0.5 and 1, although its chance-standardised version,
the Gini coefficient, given by 2AUC− 1, is sometimes preferred.

2.5 Score distributions

It is instructive to recast the above discussion in terms of the class-conditional score distri-
butions, denoted by F0 and F1, and the respective class priors π0 and π1, given by

F1(t) = P (s(x) < t | 1), F0(t) = P (s(x) < t | 0), π0 = P (0), π1 = P (1)

If we employ the empirical score distributions (see Figure 2) as proxies for the unknown true
distributions, it may be seen that F0(t) = 1 − TPR(t), F1(t) = 1 − FPR(t), π0 = TP+FN

n

and π1 = TN+FP
n . In particular, the ROC curve is a plot of 1− F0 against 1− F1, and:

ER(t) = {π0(1− F0(t)) + π1F1(t)}

9

> plotROC(results,which=4)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Smoothed score distributions
 (class 0: continuous, class 1: dotted)

Score

D
en

si
ty

LDA
kNN

Figure 2: Empirical scoring densities for the LDA and k-NN classifiers on the Pima dataset.

Finally, the AUC may now be thought of as the following integral:

AUC =

∫
F0(t)dF1(t) =

∫
F0(t)f1(t)dt

The rightmost equality assumes the distribution is differentiable, which will not hold for an
empirical distribution. To simplify the exposition, for the remainder of this discussion we
assume that F0 and F1 are the true distributions.

2.6 Costs and the H-measure

Most of the above metrics attempt to take a balanced view of the trade-off between FPs
and FNs. A principled way to achieve this is to introduce the notion of misclassification
costs, which seek to quantify the relative severity of one type of error over the other. Let
c in [0, 1] denote the ‘cost’ of misclassifying a class 0 object as class 1 (FP), and 1 − c the
cost of misclassifying a class 1 object as class 0 (FN). Consider then the total cost:

L(c; t) = 2(cπ0(1− F0(t)) + (1− c)π1F1(t))

where we have multiplied by 2 in order to make the numbers comparable to ER(t), which is
now a special case of L(c; t) for equal misclassification costs, i.e., c = 0.5. We may similarly
generalise MTL into the Minimum Weighted Loss (MWL) instead, by choosing the threshold
that minimises L(c; t) for each value of c:

MWL(c) = L(c;Tc), where Tc = argmin
t

L(c; t)

Again, MTL is now a special case of MWL for c = 0.5. Interestingly, the KS statistic is also
related to a special case of MWL for c = π1, a choice we motivate in the next section:

KS = maxt{Sens + Spec} = maxt{1 + F1(t)− F0(t)} = 1− π1π0MWL(π1)

10

In the MWL setup, the threshold is no longer a free parameter of the classifier, but rather
determined by the cost, c, and, under sensible conditions, uniquely (see [7]). The cost itself
on the other hand is clearly a property of the application domain, not of the classifier.
For instance, cost-sensitive classification is particularly popular in medical diagnosis of life-
threatening diseases, where it must be taken into account that a false alarm generally costs
less than a missed case, so c >> 0.5. In practice however it is very difficult to ask the end
user to specify a particular value for c. Moreover, most methodological improvements in
classification occur without a specific application in mind, where, again, it is difficult to set
a reasonable cost. It is more realistic to specify a distribution instead, w(c), over different
values of c, capturing the end user’s uncertainty about the exact values of the costs:

Lw =

∫
c

L(c;Tc)w(c)dc

This notion of averaged minimum cost-weighted loss allows to formulate a criticism of the
AUC which in turn motivates the H measure. It is shown in [6] that the AUC may be
written in terms of Lw, albeit with a choice of prior w(c) that depends on the classifier.
In effect, when interpreted in terms of costs, the AUC evaluates different classifiers using
different metrics. In contrast, employing a common prior for all classifiers (see next section
for a default choice) yields the H measure:

H = 1− Lw

Lmax
w

where we have normalised by the maximum value Lw can take (i.e.,Lmax
w is the averaged

MWL of the trivial classifier), and subtracted from 1 so that higher values indicate better
performance. The suggested choice of prior is discussed in the following section.

2.7 Choosing the prior

Although for the H measure the distribution w(c) is fixed – in the sense that any given
researcher should choose a distribution and use that for all classifiers being applied on the
given problem – this distribution is meant to reflect the structure of each given application
domain, and hence may very well differ across different research areas. However, for purposes
of global comparison, [2] proposed a certain universal standard which we now describe.

In many problems the class sizes are extremely unbalanced. In such cases, it would
be rare that one would want to treat the two classes symmetrically. Instead, one would
probably want to treat misclassifications of the smaller class as more serious than those of
the larger class, since if they are treated as of equal severity then very little loss would be
made by assigning everything to the larger class. This asymmetry can be seen to underlie
the KS statistic, which is a simple linear transformation of the MWL when c = π1 and
1−c = π0. This latter choice precisely has the effect of turning a missed instance of the rare
class into a graver type of error. The proposed default prior for the H measure relies on the
same intuition, but rather than committing to a single fixed value of c, it considers the entire
range of c ∈ [0, 1], but places maximum weight on the choice c = π1. In mathematical terms,
w(c) is a Beta distribution whose mode is at c = π1 ≈ 0.3. We may plot the prior by the
plotROC command (see Figure 3(a)). Note that the hmeasure package internally employs
an alternative parameterisation of the cost, known as the severity ratio, which considers the
ratio between the two costs, SR = c

1−c , so that SR = 1 represents symmetric costs. The
default severity ratio may of course be changed to a user-specified setting.

11

Returning to our example, we observe that, using the default c = π1, we obtain:

> results$metrics[c('H','KS','ER','FP','FN')]

H KS ER FP FN

LDA 0.4802968 0.6335723 0.2217195 25 24

kNN 0.3707186 0.4920941 0.2262443 25 25

The two classifiers have very similar error rates, as they differ on a single error. However,
this error is of the graver type, since the positive (disease) class is less prevalent:

> summary(pima.test[,8])

No Yes

147 74

This is reflected in the KS statistic and the H measure which both clearly favour the LDA
classifier. An interesting point of comparison is the behaviour of the H measure for c = 0.5:

> results.SR1 <- HMeasure(

+ true.class, data.frame(LDA=scores.lda,kNN=scores.knn),severity.ratio=1)

> results.SR1$metrics[c('H','KS','ER','FP','FN')]

H KS ER FP FN

LDA 0.4401067 0.6335723 0.2217195 25 24

kNN 0.3463211 0.4920941 0.2262443 25 25

Despite the fact that both the H measure and the ER encode the assumption of symmetric
costs, the H measure continues to clearly favour the LDA to the k-NN classifier. It is
immediately evident from Figure 1 that indeed LDA is equivalent to k-NN in the early
part of the ROC, but clearly outperforms it in the latter part. Presumably, the choice of
threshold corresponding to c = 0.5 happens to be in a region where the two perform equally
well. Nevertheless, the uncertainty of the H-measure allows it to cast a ‘wider net’ (see
Figure 3(b)), taking into account parts of the ROC space either side of this specific choice
of threshold, and hence correctly concludes that LDA should be preferred in this instance.
To conclude this discussion, we now use the plotROC function to graphically display the
incoherency of the AUC when interpreted in terms of costs. Recall that the AUC averages
over thresholds under the assumption that all values of the TPR (sensitivity) are equally
likely. This uniform prior over the sensitivity induces, for each dataset and classifier, a prior
over costs, which we display in Figure 4. The prior can be seen to differ across the two
classifiers, which is incoherent under the cost interpretation.

3 Conclusion

The trade-off between false positives and false negatives inherent in binary classification
tasks complicates any attempt at providing a scalar summary of classification performance.
Several measures have been proposed in the literature to overcome this difficulty, prominent
among which is the Area Under the ROC Curve (AUC), implementations of which exist in
almost all statistical programming languages. The AUC has recently come under criticism
for handling the aforementioned tradeoff in a fundamentally incoherent manner. In this

12

> plotROC(results,which=2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

H measure w(c)

Normalised Cost = SR/(1+SR)

w
(c

)

All classifiers
SR = 0.503

> plotROC(results.SR1,which=2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

H measure w(c)

Normalised Cost = SR/(1+SR)
w

(c
)

All classifiers
SR = 1

Figure 3: The prior employed by the H measure for c = π1 (left) and c = 0.5 (right).

> plotROC(results,which=3)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC w(c)

Cost

w
(c

)

LDA
kNN

Figure 4: Cost distribution implicitly employed by the AUC for the k-NN and LDA classifier
against the Pima dataset.

13

report we focus in one particular criticism that appeared in [6], whereby the AUC is shown
to treat the relative severities of misclassifications differently when different classifiers are
used, but note here that more recently other related criticisms have appeared (e.g., [9]).
A coherent alternative was proposed in [6], known as the H measure, which can accom-
modate expert knowledge regarding misclassification costs, whenever that is available. The
{hmeasure} package computes and reports the H measure of classification performance,
alongside most commonly used alternatives, including the AUC. The package also provides
convenient plotting routines that yield insights into the differences and similarities between
the various metrics.

References

[1] M. Gönen. Analyzing receiver operating characteristic curves with sas. Technical report,
SAS Institute: Cary, NC., 2007.

[2] D.J. Hand and C. Anagnostopoulos. A better Beta for the H measure of classification
performance Preprint, arXiv:1202.2564v1

[3] D.J. Hand. Construction and assessment of classification rules. Wiley: Chichester.,
1997.

[4] D.J. Hand. Measuring diagnostic accuracy of statistical prediction rules. Statistica
Neerlandica, 53:3–16., 2001.

[5] D.J. Hand. Good practice in retail credit scorecard assessment. Journal of the Opera-
tional Research Society, 56:1109–1117, 2005.

[6] D.J. Hand. Measuring classifier performance: a coherent alternative to the area under
the ROC curve. Machine Learning, 77:103–123, 2009.

[7] D.J. Hand. Evaluating diagnostic tests: the area under the ROC curve and the balance
of errors. Statistics in Medicine, 29:1502–1510, 2010.

[8] D.J. Hand. Assessing the performance of classification, signal detection, and diagnostic
methods. Technical report, Department of Mathematics, Imperial College, London,
2011.

[9] D.J. Hand and C. Anagnostopoulos. When is the area under the roc curve an appropri-
ate measure of classifier performance? Technical report, Department of Mathematics,
Imperial College, London, 2011.

[10] D.J. Hand, C. Whitrow, N.M. Adams, P. Juszczak, and D. Weston. Performance
criteria for plastic card fraud detection tools. Journal of the Operational Research
Society, 59:956–962, 2008.

[11] W.J. Krzanowski and D.J. Hand. ROC curves for continuous data. Chapman and Hall,
2009.

[12] M.S. Pepe. The Statistical Evaluation of Medical Tests for Classification and Prediction.
Oxford University Press: Oxford, 2003.

14

[13] F. Provost and T. Fawcett Robust classification systems for imprecise environments.
In: Proceedings of the THird International Conference on Knowledge Discovery and
Data Mining, 43–48 AAAI Press, Menlo Park, CA

[14] X-H. Zhou, N.A. Obuchowski, and D.K. McClish. Statistical Methods in Diagnostic
Medicine. Wiley: New York, 2002.

15

