
Extending lsmeans

Russell V. Lenth

March 8, 2017

1 Introduction

Suppose you want to use lsmeans for some type of model that it doesn’t (yet) support. Or, suppose
you have developed a new package with a fancy model-fitting function, and you’d like it to work
with lsmeans. What can you do? Well, there is hope because lsmeans is designed to be extended.

The first thing to do is to look at the help page for extending the package:

R> help("extending-lsmeans", package="lsmeans")

It gives details about the fact that you need to write two S3 methods, recover.data and lsm.basis,
for the class of object that your model-fitting function returns. The recover.data method is
needed to recreate the dataset so that the reference grid can be identified. The lsm.basis method
then determines the linear functions needed to evaluate each point in the reference grid and to
obtain associated information—such as the variance-covariance matrix—needed to do estimation
and testing.

This vignette presents an example where suitable methods are developed, and discusses a few
issues that arise.

2 Data example

The MASS package contains various functions that do robust or outlier-resistant model fitting. We
will cobble together some lsmeans support for these. But first, let’s create a suitable dataset (a
simulated two-factor experiment) for testing.1

R> fake = expand.grid(rep = 1:5, A = c("a1","a2"), B = c("b1","b2","b3"))

R> fake$y = c(11.46,12.93,11.87,11.01,11.92,17.80,13.41,13.96,14.27,15.82,

23.14,23.75,-2.09,28.43,23.01,24.11,25.51,24.11,23.95,30.37,

17.75,18.28,17.82,18.52,16.33,20.58,20.55,20.77,21.21,20.10)

The y values were generated using predetermined means and Cauchy-distributed errors. There are
some serious outliers in these data.

3 Supporting rlm

The MASS package provides an rlm function that fits robust-regression models using M estimation.
We’ll fit a model using the default settings for all tuning parameters:

1I unapologetically use = as the assignment operator. It is good enough for C and Java, and supported by R.

1

R> library(MASS)

R> fake.rlm = rlm(y ~ A * B, data = fake)

R> library(lsmeans)

R> lsmeans(fake.rlm, ~B | A)

A = a1:

B lsmean SE df asymp.LCL asymp.UCL

b1 11.83800 0.4774474 NA 10.90222 12.77378

b2 23.30000 0.4774474 NA 22.36422 24.23578

b3 17.80078 0.4774474 NA 16.86500 18.73656

A = a2:

B lsmean SE df asymp.LCL asymp.UCL

b1 14.68344 0.4774474 NA 13.74766 15.61922

b2 24.71164 0.4774474 NA 23.77586 25.64742

b3 20.64200 0.4774474 NA 19.70622 21.57778

Confidence level used: 0.95

The first lesson to learn about extending lsmeans is that sometimes, it already works! It works here
because rlm objects inherit from lm, which is supported by the lsmeans package, and rlm objects
aren’t enough different to create any problems.

4 Supporting lqs objects

The MASS resistant-regression functions lqs, lmsreg, and ltsreg are another story, however. They
create lqs objects that are not extensions of any other class, and have other issues, including not
even having a vcov method. So for these, we really do need to write new methods for lqs objects.
First, let’s fit a model.

R> fake.lts = ltsreg(y ~ A * B, data = fake)

4.1 The recover.data method

It is usually an easy matter to write a recover.data method. Look at the one for lm objects:

R> lsmeans:::recover.data.lm

function (object, ...)

{

fcall = object$call

recover.data(fcall, delete.response(terms(object)), object$na.action,

...)

}

<bytecode: 0x0000000018e361f8>

<environment: namespace:lsmeans>

Note that all it does is obtain the call component and call the method for class "call", with
additional arguments for its terms component and na.action. It happens that we can access these
attributes in exactly the same way as for lm objects; so, . . .

2

R> recover.data.lqs = lsmeans:::recover.data.lm

Let’s test it:

R> rec.fake = recover.data(fake.lts)

R> head(rec.fake)

A B

1 a1 b1

2 a1 b1

3 a1 b1

4 a1 b1

5 a1 b1

6 a2 b1

Our recovered data excludes the response variable y (owing to the delete.response call), and this
is fine.

Special arguments By the way, there are two special arguments data and params that may
be handed to recover.data via ref.grid or lsmeans or a related function; and you may need
to provide for if you don’t use the recover.data.call function. The data argument is needed
to cover a desperate situation that occurs with certain kinds of models where the underlying data
information is not saved with the object—e.g., models that are fitted by iteratively modifying the
data. In those cases, the only way to recover the data is to for the user to give it explicitly, and
recover.data just adds a few needed attributes to it.

The params argument is needed when the model formula refers to variables besides predictors.
For example, a model may include a spline term, and the knots are saved in the user’s environment
as a vector and referred to in the call to fit the model. In trying to recover the data, we try to
construct a data frame containing all the variables present on the right-hand side of the model, but
if some of those are scalars or of different lengths than the number of observations, an error occurs.
So you need to exclude any names in params when reconstructing the data.

Error handling If you check for any error conditions in recover.data, simply have it return a
character string with the desired message, rather than invoking stop. This provides a cleaner exit.
The reason is that whenever recover.data throws an error, an informative message suggesting
that data or params be provided is displayed. But a character return value is tested for and throws
a different error with your string as the message.

4.2 The lsm.basis method

The lsm.basis method has four required arguments:

R> args(lsmeans:::lsm.basis.lm)

function (object, trms, xlev, grid, ...)

NULL

These are, respectively, the model object, its terms component (at least for the right-hand side of
the model), a list of levels of the factors, and the grid of predictor combinations that specify the
reference grid.

3

The function must obtain six things and return them in a named list. They are the matrix X

of linear functions for each point in the reference grid, the regression coefficients bhat; the variance-
covariance matrix V; a matrix nbasis for non-estimable functions; a function dffun(k,dfargs) for
computing degrees of freedom for the linear function sum(k*bhat); and a list dfargs of arguments
to pass to dffun.

To write your own lsm.basis function, examining some of the existing methods can help; but
the best resource is the predict method for the object in question, looking carefully to see what
it does to predict values for a new set of predictors (e.g., newdata in predict.lm). Following this
advice, let’s take a look at it:

R> MASS:::predict.lqs

function (object, newdata, na.action = na.pass, ...)

{

if (missing(newdata))

return(fitted(object))

Terms <- delete.response(terms(object))

m <- model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)

if (!is.null(cl <- attr(Terms, "dataClasses")))

.checkMFClasses(cl, m)

X <- model.matrix(Terms, m, contrasts = object$contrasts)

drop(X %*% object$coefficients)

}

<bytecode: 0x000000001982b8f0>

<environment: namespace:MASS>

Based on this, here is a listing of an lsm.basis method for lqs objects:

1 R> lsm.basis.lqs = function(object, trms, xlev, grid, ...) {

2 m = model.frame(trms, grid, na.action = na.pass, xlev = xlev)

3 X = model.matrix(trms, m, contrasts.arg = object$contrasts)

4 bhat = coef(object)

5 Xmat = model.matrix(trms, data=object$model)

6 V = rev(object$scale)[1]^2 * solve(t(Xmat) %*% Xmat)

7 nbasis = matrix(NA)

8 dfargs = list(df = nrow(Xmat) - ncol(Xmat))

9 dffun = function(k, dfargs) dfargs$df

10 list(X=X, bhat=bhat, nbasis=nbasis, V=V, dffun=dffun, dfargs=dfargs)

11 }

Before explaining it, let’s verify that it works:

R> lsmeans(fake.lts, ~ B | A)

A = a1:

B lsmean SE df lower.CL upper.CL

b1 11.87278 0.2284451 24 11.40129 12.34427

b2 23.09278 0.2284451 24 22.62129 23.56427

b3 17.77278 0.2284451 24 17.30129 18.24427

4

A = a2:

B lsmean SE df lower.CL upper.CL

b1 13.91278 0.2284451 24 13.44129 14.38427

b2 24.06278 0.2284451 24 23.59129 24.53427

b3 20.50278 0.2284451 24 20.03129 20.97427

Confidence level used: 0.95

Hooray! Note the results are comparable to those we had for fake.rlm, albeit the standard errors
are quite a bit smaller. (In fact, the SEs could be misleading; a better method for estimating
covariances should probably be implemented, but that is beyond the scope of this vignette.)

4.3 Dissecting lsm.basis.lqs

Let’s go through the listing of this method, by line numbers.

2–3: Construct the linear functions, X. This is a pretty standard standard two-step process: First
obtain a model frame, m, for the grid of predictors, then pass it as data to model.data to
create the associated design matrix. As promised, this code is essentially identical to what
you find in predict.lqs.

4: Obtain the coefficients, bhat. Most model objects have a coef method.

5–6: Obtain the covariance matrix, V, of bhat. In many models, this can be obtained using the
object’s vcov method. But not in this case. Instead, I cobbled one together using what it
would be for ordinary regression: σ̂2(X′X)−1, where X is the design matrix for the whole
dataset (not the reference grid). Here, σ̂ is obtained using the last element of the scale

element of the object (depending on the method, there are one or two scale estimates).
This probably under-estimates the variances and distorts the covariances, because robust
estimators have some efficiency loss.

7: Compute the basis for non-estimable functions. This applies only when there is a possibility
of rank deficiency in the model, and lqs methods cannot handle that. All linear functions
are estimable, and we signal that by setting nbasis equal to a 1× 1 matrix of NA. If rank
deficiency were possible, the estimability package (which is required by lsmeans) provides a
nonest.basis function that makes this fairly painless—I would have coded:

R> nbasis = estimability::nonest.basis(Xmat)

On the other hand, if rank-deficient cases are not possible, set nbasis equal to all.estble,
a constant in the estimability package.

There is a subtlety you need to know regarding estimability. Suppose the model is rank-
deficient, so that the design matrix X has p columns but rank r < p. In that case, bhat
should be of length p (not r), and there should be p− r elements equal to NA, corresponding
to columns of X that were excluded from the fit. Also, X should have all p columns. In other
words, do not alter or throw-out columns of X or their corresponding elements of bhat—even
those with NA coefficients—as they are essential for assessing estimability. V should be r× r,
however: the covariance matrix for the non-excluded predictors.

5

8-9: Obtain dffun and dfargs. This is a little awkward because it is designed to allow support for
mixed models, where approximate methods may be used to obtain degrees of freedom. The
function dffun is expected to have two arguments: k, the vector of coefficients of bhat, and
dfargs, a list containing any additional arguments. In this case (and in many other models),
the degrees of freedom are the same regardless of k. We put the required degrees of freedom
in dfargs and write dffun so that it simply returns that value.

10: Return these results in a named list.

5 Hook functions

Most linear models supported by lsmeans have straightforward structure: Regression coefficients,
their covaraince matrix, and a set of linear functions that define the reference grid. However, a
few are more complex. An example is the "clm" class in the ordinal package, which allows a scale
model in addition to the location model. When a scale model is used, the scale parameters are
included in the model matrix, regression coefficients, and covariance matrix, and we can’t just use
the usual matrix operations to obtain estimates and standard errors. To facilitate using custom
routines for these tasks, the lsm.basis.clm function function provided in lsmeans includes, in its
misc part, the names (as character constants) of two “hook” functions: misc$estHook has the name
of the function to call when computing estimates, standard errors, and degrees of freedom (for the
summary method); and misc$vcovHook has the name of the function to call to obtain the covariance
matrix of the grid values (used by the vcov method). These functions are called in lieu of the usual
built-in routines for these purposes, and return the appropriately sized matrices.

In addition, you may want to apply some form of special post-processing after the reference
grid is constructed. To provide for this, give the name of your function to post-process the object
in misc$postGridHook. Again, "clm" objects (as well as "polr" in the MASS package) serve as
an example. They allow a mode specification that in two cases, calls for post-processing. The
"cum.prob" mode uses the regrid function to transform the linear predictor to the cumulative-
probability scale. And the "prob" mode performs this, as well as applying the contrasts necessary
to difference the cumulative probabilities into the class probabilities.

6 Exported methods

For package developers’ convenience, lsmeans exports some of its S3 methods for recover.data

and/or lsm.basis—use methods("recover.data") and methods("lsm.basis") to discover which
ones. It may be that all you need is to invoke one of those methods and perhaps make some small
changes—especially if your model-fitting algorithm makes heavy use of an existing model type
supported by lsmeans. Contact me if you need lsmeans to export some additional methods for your
use.

A few additional functions are exported because they may be useful to developers. They are as
follows:

.all.vars(expr, retain) Some users of your package may include $ or [[]] operators in their
model formulas. If you need to get the variable names, base::all.vars will probably not
give you what you need. Here is an example:

R> form = ~ data$x + data[[5]]

R> base::all.vars(form)

6

[1] "data" "x"

R> lsmeans::.all.vars(form)

[1] "data$x" "data[[5]]"

The retain argument may be used to specify regular expressions for patterns to retain as
parts of variable names.

.diag(x, nrow, ncol) The base diag function has a booby trap whereby, for example, diag(57.6)
returns a 57× 57 identity matrix rather than a 1× 1 matrix with 57.6 as its only element.
But lsmeans::.diag(57.6) will return the latter. The function works identically to diag

except for the identity-matrix trap.

.aovlist.dffun(k, dfargs) This function is exported because it is needed for computing degrees
of freedom for models fitted using aov, but it may be useful for other cases where Satterthwaite
degrees-of-freedom calculations are needed. It requires the dfargs slot to contain analogous
contents.

.get.offset(terms, grid) If terms is a model formula containing an offset call, this is will
compute that offset in the context of grid (a data.frame).

R> .get.offset(terms(~ speed + offset(.03*breaks)), head(warpbreaks))

[1] 0.78 0.90 1.62 0.75 2.10 1.56

.my.vcov(object, ...) In a call to ref.grid, lsmeans, etc., the user may use vcov. to specify an
alternative function or matrix to use as the covariance matrix of the fixed-effects coefficients.
This function supports that feature. Calling .my.vcov in place of the vcov method will
substitute the user’s vcov. when it is present in

7 Support for rsm objects

As an example of how an existing package supports lsmeans, we show the support offered by the
rsm package. Its rsm function returns an "rsm" object which is an extension of the "lm" class. Part
of that extension has to do with coded.data structures whereby, as is typical in response-surface
analysis, models are fitted to variables that have been linearly transformed (coded) so that ±1 on
the coded scale represents the scope of each predictor.

Without any extra support in rsm, lsmeans will work just fine with "rsm" objects; but if the
data are coded, it becomes awkward to present results in terms of the original predictors on their
original, uncoded scale. The lsmeans-related methods in rsm provide a mode argument that may
be used to specify whether we want to work with coded or uncoded data. The possible values for
mode are "asis" (ignore any codings, if present), "coded" (use the coded scale), and "decoded"

(use the decoded scale). The first two are actually the same in that no decoding is done; but it
seems clearer to provide separate options because they represent two different situations.

7

7.1 The recover.data method

Note that coding is a predictor transformation, not a response transformation (we could have that,
too, as it’s already supported by the lsmeans infrastructure). So, to handle the "decode" mode,
we will need to actually decode the predictors used to construct he reference grid. That means we
need to make recover.data a lot fancier! Here it is:

1 R> recover.data.rsm = function(object, data, mode = c("asis", "coded", "decoded"), ...) {

2 mode = match.arg(mode)

3 cod = codings(object)

4 fcall = object$call

5 if(is.null(data))

6 data = lsmeans::recover.data(fcall, delete.response(terms(object)), object$na.action, ...)

7 if (!is.null(cod) && (mode == "decoded")) {

8 pred = cpred = attr(data, "predictors")

9 trms = attr(data, "terms")

10 data = decode.data(as.coded.data(data, formulas = cod))

11 for (form in cod) {

12 vn = all.vars(form)

13 if (!is.na(idx <- grep(vn[1], pred))) {

14 pred[idx] = vn[2]

15 cpred = setdiff(cpred, vn[1])

16 }

17 }

18 attr(data, "predictors") = pred

19 new.trms = update(trms, reformulate(c("1", cpred))) # excludes coded variables

20 attr(new.trms, "orig") = trms # save orig terms as an attribute

21 attr(data, "terms") = new.trms

22 }

23 data

24 }

Lines 2–6 ensure that mode is legal, retrieves the codings from the object, and obtain the results
we would get from recover.data had it been an "lm" object. If mode is not "decoded", or if no
codings were used, that’s all we need. Otherwise, we need to return the decoded data. However, it
isn’t quite that simple, because the model equation is still defined on the coded scale. Rather than
to try to translate the model coefficients and covariance matrix to the decoded scale, we elected to
remember what we will need to do later to put things back on the coded scale. In lines 8–9, we
retrieve the attributes of the recovered data that provide the predictor names and terms object on
the coded scale. In line 10, we replace the recovered data with the decoded data.

By the way, the codings comprise a list of formulas with the coded name on the left and the
original variable name on the right. It is possible that only some of the predictors are coded (for
example, blocking factors will not be). In the for loop in lines 11–17, the coded predictor names
are replaced with their decoded names. For technical reasons to be discussed later, we also remove
these coded predictor names from a copy, cpred, of the list of all predictors in the coded model. In
line 18, the "predictors" attribute of data is replaced with the modified version.

Now, there is a nasty technicality. The ref.grid function in lsmeans has a few lines of code
after recover.data is called that determine if any terms in the model convert covariates to factors
or vice versa; and this code uses the model formula. That formula involves variables on the coded
scale, and those variables are no longer present in the data, so an error will occur if it tries to
access them. Luckily, if we simply take those terms out of the formula, it won’t hurt because those
coded predictors would not have been converted in that way. So in line 19, we update trms with a

8

simpler model with the coded variables excluded (the intercept is explicitly included to ensure there
will be a right-hand side even is cpred is empty). We save that as the "terms" attribute, and the
original terms as a new "orig" attribute to be retrieved later. The data object, modified or not,
is returned. If data have been decoded, ref.grid will construct its grid using decoded variables.

7.2 The lsm.basis method

Now comes the lsm.basis method that will be called after the grid is defined. It is listed below:

1 R> lsm.basis.rsm = function(object, trms, xlev, grid,

2 mode = c("asis", "coded", "decoded"), ...) {

3 mode = match.arg(mode)

4 cod = codings(object)

5 if(!is.null(cod) && mode == "decoded") {

6 grid = coded.data(grid, formulas = cod)

7 trms = attr(trms, "orig") # get back the original terms we saved

8 }

9

10 m = model.frame(trms, grid, na.action = na.pass, xlev = xlev)

11 X = model.matrix(trms, m, contrasts.arg = object$contrasts)

12 bhat = as.numeric(object$coefficients)

13 V = lsmeans::.my.vcov(object, ...)

14

15 if (sum(is.na(bhat)) > 0)

16 nbasis = estimability::nonest.basis(object$qr)

17 else

18 nbasis = estimability::all.estble

19 dfargs = list(df = object$df.residual)

20 dffun = function(k, dfargs) dfargs$df

21

22 list(X = X, bhat = bhat, nbasis = nbasis, V = V,

23 dffun = dffun, dfargs = dfargs, misc = list())

24 }

This is much simpler. All we have to do is determine if decoding was done (line 5); and, if so,
convert the grid back to the coded scale (line 6) and recover the original "terms" attribute (line 7).
The rest is borrowed directly from the lsm.basis.lm method in lsmeans. Note that line 13 uses
one of the exported functions we described in the preceding section. Lines 15–18 use functions from
the estimability package to handle the possibility that the model is rank-deficient.

7.3 Exporting the methods

To make the methods available to users of the rsm package, the following code appears in the
NAMESPACE file:

R> if (requireNamespace("lsmeans", quietly = TRUE)) {

importFrom("lsmeans", "recover.data", "lsm.basis")

importFrom("estimability", "all.estble", "nonest.basis")

S3method(recover.data, rsm)

S3method(lsm.basis, rsm)

}

This only has an effect if the user has the lsmeans package installed (in which case estimability is
also installed, as it is required); otherwise the code is skipped. We need to import the prototypes

9

for recover.data and lsm.basis, and register our new methods. Also, packages lsmeans and
estimability are included in the Imports section of the DESCRIPTION file.

Alternatively, we could simply export the functions recover.data.rsm and lsm.basis.rsm

without any need to import anything or register methods. It’s simpler to do, but makes those
functions user-visible and thus they require documentation.

7.4 A demonstration

Here’s a demonstration of this new support. The standard example for rsm fits a second-order
model CR.rs2 to a dataset organized in two blocks and with two coded predictors.

R> library("rsm")

R> example("rsm") ### (output is not shown) ###

First, let’s look at some results on the coded scale—which are the same as for an ordinary "lm"

object.

R> lsmeans(CR.rs2, ~ x1 * x2, mode = "coded",

at = list(x1 = c(-1, 0, 1), x2 = c(-2, 2)))

x1 x2 lsmean SE df lower.CL upper.CL

-1 -2 74.98637 0.2984365 7 74.28068 75.69206

0 -2 76.97747 0.2402529 7 76.40936 77.54558

1 -2 76.35145 0.2984365 7 75.64576 77.05714

-1 2 76.79722 0.2984365 7 76.09153 77.50291

0 2 79.28832 0.2402529 7 78.72021 79.85643

1 2 79.16230 0.2984365 7 78.45661 79.86799

Results are averaged over the levels of: Block

Confidence level used: 0.95

Now, the coded variables x1 and x2 are derived from these coding formulas for predictors Time and
Temp:

R> codings(CR.rs1)

$x1

x1 ~ (Time - 85)/5

$x2

x2 ~ (Temp - 175)/5

Thus, for example, a coded value of x1 = 1 corresponds to a time of 85 + 1× 5 = 90. Here are
some results working with decoded predictors. Note that the at list must now be given in terms of
Time and Temp:

R> lsmeans(CR.rs2, ~ Time * Temp, mode = "decoded",

at = list(Time = c(80, 85, 90), Temp = c(165, 185)))

10

Time Temp lsmean SE df lower.CL upper.CL

80 165 74.98637 0.2984365 7 74.28068 75.69206

85 165 76.97747 0.2402529 7 76.40936 77.54558

90 165 76.35145 0.2984365 7 75.64576 77.05714

80 185 76.79722 0.2984365 7 76.09153 77.50291

85 185 79.28832 0.2402529 7 78.72021 79.85643

90 185 79.16230 0.2984365 7 78.45661 79.86799

Results are averaged over the levels of: Block

Confidence level used: 0.95

Since the supplied settings are the same on the decoded scale as were used on the coded scale, the
LS means are identical to those in the previous output.

8 Conclusions

It is relatively simple to write appropriate methods that work with lsmeans for model objects it
does not support. I hope this vignette is helpful for understanding how. Furthermore, if you are
the developer of a package that fits linear models, I encourage you to include recover.data and
lsm.basis methods for those classes of objects, so that users have access to lsmeans support.

11

	Introduction
	Data example
	Supporting rlm
	Supporting lqs objects
	The recover.data method
	The lsm.basis method
	Dissecting lsm.basis.lqs

	Hook functions
	Exported methods
	Support for rsm objects
	The recover.data method
	The lsm.basis method
	Exporting the methods
	A demonstration

	Conclusions

