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Abstract

The markovchain package aims to fill a gap within the R framework providing S4
classes and methods for easily handling discrete time Markov chains, homogeneous and
simple inhomogeneous ones as well as continuous time Markov chains. The S4 classes
for handling and analysing discrete and continuous time Markov chains are presented, as
well as functions and method for performing probabilistic and statistical analysis. Finally,
some examples in which the package’s functions are applied to Economics, Finance and
Natural Sciences topics are shown.
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1. Introduction

Markov chains represent a class of stochastic processes of great interest for the wide spectrum
of practical applications. In particular, discrete time Markov chains (DTMC) permit to model
the transition probabilities between discrete states by the aid of matrices. Various R packages
deal with models that are based on Markov chains:

❼ msm (Jackson 2011) handles Multi-State Models for panel data;

❼ mcmcR (Geyer and Johnson 2013) implements Monte Carlo Markov Chain approach;

❼ hmm (Himmelmann and www.linhi.com 2010) fits hidden Markov models with covari-
ates;

❼ mstate fits Multi-State Models based on Markov chains for survival analysis (de Wreede,
Fiocco, and Putter 2011).

Nevertheless, the R statistical environment (R Core Team 2013) seems to lack a simple package
that coherently defines S4 classes for discrete Markov chains and allows to perform probabilis-
tic analysis, statistical inference and applications. For the sake of completeness, markovchain

is the second package specifically dedicated to DTMC analysis, being DTMCPack (Nicholson
2013) the first one. Notwithstanding, markovchain package (Spedicato 2016) aims to offer
more flexibility in handling DTMC than other existing solutions, providing S4 classes for both
homogeneous and non-homogeneous Markov chains as well as methods suited to perform sta-
tistical and probabilistic analysis.
The markovchain package depends on the following R packages: expm (Goulet, Dutang,
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Maechler, Firth, Shapira, Stadelmann, and expm-developers@lists.R-forge.R-project.org 2013)
to perform efficient matrices powers; igraph (Csardi and Nepusz 2006) to perform pretty plot-
ting of markovchain objects and matlab (Roebuck 2011), that contains functions for matrix
management and calculations that emulate those within MATLAB environment. Moreover,
other scientific softwares provide functions specifically designed to analyze DTMC, as Math-

ematica 9 (Wolfram Research 2013b).
The paper is structured as follows: Section 2 briefly reviews mathematics and definitions re-
garding DTMC, Section 3 discusses how to handle and manage Markov chain objects within
the package, Section 4 and Section 5 show how to perform probabilistic and statistical mod-
elling, while Section 6 presents some applied examples from various fields analyzed by means
of the markovchain package.

2. Review of core mathematical concepts

2.1. General Definitions

A DTMC is a sequence of random variables X1, X2 , . . . , Xn, . . . characterized by the Markov
property (also known as memoryless property, see Equation 1). The Markov property states
that the distribution of the forthcoming state Xn+1 depends only on the current state Xn

and doesn’t depend on the previous ones Xn−1, Xn−2, . . . , X1.

Pr (Xn+1 = xn+1 |X1 = x1, X2 = x2,..., Xn = xn ) = Pr (Xn+1 = xn+1 |Xn = xn ) . (1)

The set of possible states S = {s1, s2, ..., sr} of Xn can be finite or countable and it is named
the state space of the chain.

The chain moves from one state to another (this change is named either ’transition’ or ’step’)
and the probability pij to move from state si to state sj in one step is named transition
probability:

pij = Pr (X1 = sj |X0 = si ) . (2)

The probability of moving from state i to j in n steps is denoted by p
(n)
ij = Pr (Xn = sj |X0 = si ).

A DTMC is called time-homogeneous if the property shown in Equation 3 holds. Time
homogeneity implies no change in the underlying transition probabilities as time goes on.

Pr (Xn+1 = sj |Xn = si ) = Pr (Xn = sj |Xn−1 = si ) . (3)

If the Markov chain is time-homogeneous, then pij = Pr (Xk+1 = sj |Xk = si ) and

p
(n)
ij = Pr (Xn+k = sj |Xk = si ), where k > 0.

The probability distribution of transitions from one state to another can be represented into
a transition matrix P = (pij)i,j , where each element of position (i, j) represents the transition
probability pij . E.g., if r = 3 the transition matrix P is shown in Equation 4

P =




p11 p12 p13
p21 p22 p23
p31 p32 p33


 . (4)
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The distribution over the states can be written in the form of a stochastic row vector x (the
term stochastic means that

∑
i xi = 1, xi ≥ 0): e.g., if the current state of x is s2, x = (0 1 0).

As a consequence, the relation between x(1) and x(0) is x(1) = x(0)P and, recursively, we get
x(2) = x(0)P 2 and x(n) = x(0)Pn, n > 0.

DTMC are explained in most theory books on stochastic processes, see Brémaud (1999) and
Dobrow (2016) for example. Valuable references online available are: Konstantopoulos (2009),
Snell (1999) and Bard (2000).

2.2. Properties and classification of states

A state sj is said accessible from state si (written si → sj) if a system started in state si has
a positive probability to reach the state sj at a certain point, i.e., ∃n > 0 : pnij > 0. If both
si → sj and sj → si, then si and sj are said to communicate.

A communicating class is defined to be a set of states that communicate. A DTMC can be
composed by one or more communicating classes. If the DTMC is composed by only one
communicating class (i.e., if all states in the chain communicate), then it is said irreducible.
A communicating class is said to be closed if no states outside of the class can be reached
from any state inside it.

If pii = 1, si is defined as absorbing state: an absorbing state corresponds to a closed com-
municating class composed by one state only.

The canonic form of a DTMC transition matrix is a matrix having a block form, where the
closed communicating classes are shown at the beginning of the diagonal matrix.

A state si has period ki if any return to state si must occur in multiplies of ki steps, that is
ki = gcd {n : Pr (Xn = si |X0 = si ) > 0}, where gcd is the greatest common divisor. If ki = 1
the state si is said to be aperiodic, else if ki > 1 the state si is periodic with period ki. Loosely
speaking, si is periodic if it can only return to itself after a fixed number of transitions ki > 1
(or multiple of ki), else it is aperiodic.

If states si and sj belong to the same communicating class, then they have the same period ki.
As a consequence, each of the states of an irreducible DTMC share the same periodicity. This
periodicity is also considered the DTMC periodicity. It is possible to classify states according
to their periodicity. Let T x→x is the number of periods to go back to state x knowing that
the chain starts in x.

❼ A state x is recurrent if P (T x→x < +∞) = 1 (equivalently P (T x→x = +∞) = 0). In
addition:

1. A state x is null recurrent if in addition E(T x→x) = +∞.

2. A state x is positive recurrent if in addition E(T x→x) < +∞.

3. A state x is absorbing if in addition P (T x→x = 1) = 1.

❼ A state x is transient if P (T x→x < +∞) < 1 (equivalently P (T x→x = +∞) > 0).

It is possible to analyze the timing to reach a certain state. The first passage time from state
si to state sj is the number Tij of steps taken by the chain until it arrives for the first time
to state sj , given that X0 = si. The probability distribution of Tij is defined by Equation 5

hij
(n) = Pr (Tij = n) = Pr (Xn = sj , Xn−1 6= sj , . . . , X1 6= sj |X0 = si) (5)
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and can be found recursively using Equation 6, given that hij
(n) = pij .

hij
(n) =

∑

k∈S−{sj}

pikhkj
(n−1). (6)

If in the definition of the first passage time we let si = sj , we obtain the first return time
Ti = inf{n ≥ 1 : Xn = si|X0 = si}. A state si is said to be recurrent if it is visited infinitely
often, i.e., Pr(Ti < +∞|X0 = si) = 1. On the opposite, si is called transient if there is a
positive probability that the chain will never return to si, i.e., Pr(Ti = +∞|X0 = si) > 0.

Given a time homogeneous Markov chain with transition matrix P, a stationary distribution
z is a stochastic row vector such that z = z · P , where 0 ≤ zj ≤ 1 ∀j and

∑
j zj = 1.

If a DTMC {Xn} is irreducible and aperiodic, then it has a limit distribution and this distri-
bution is stationary. As a consequence, if P is the k × k transition matrix of the chain and
z = (z1, ..., zk) is the eigenvector of P such that

∑k
i=1 zi = 1, then we get

lim
n→∞

Pn = Z, (7)

where Z is the matrix having all rows equal to z. The stationary distribution of {Xn} is
represented by z.

2.3. A short example

Consider the following numerical example. Suppose we have a DTMC with a set of 3 possible
states S = {s1, s2, s3}. Let the transition matrix be

P =




0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4


 . (8)

In P , p11 = 0.5 is the probability that X1 = s1 given that we observed X0 = s1 is 0.5, and so
on. It is easy to see that the chain is irreducible since all the states communicate (it is made
by one communicating class only).

Suppose that the current state of the chain is X0 = s2, i.e., x
(0) = (010), then the probability

distribution of states after 1 and 2 steps can be computed as shown in Equations 9 and 10.

x(1) = (0 1 0)




0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4


 = (0.15 0.45 0.4) . (9)

x(n) = x(n−1)P → (0.15 0.45 0.4)




0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4


 = (0.2425 0.3725 0.385) . (10)

If, f.e., we are interested in the probability of reaching the state s3 in two steps, then
Pr (X2 = s3 |X0 = s2 ) = 0.385.
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3. The structure of the package

3.1. Creating markovchain objects

The package is loaded within the R command line as follows:

R> library("markovchain")

The markovchain and markovchainList S4 classes (Chambers 2008) are defined within the
markovchain package as displayed:

Class "markovchain" [package "markovchain"]

Slots:

Name: states byrow transitionMatrix

Class: character logical matrix

Name: name

Class: character

Class "markovchainList" [package "markovchain"]

Slots:

Name: markovchains name

Class: list character

The first class has been designed to handle homogeneous Markov chain processes, while
the latter (which is itself a list of markovchain objects) has been designed to handle non-
homogeneous Markov chains processes.

Any element of markovchain class is comprised by following slots:

1. states: a character vector, listing the states for which transition probabilities are
defined.

2. byrow: a logical element, indicating whether transition probabilities are shown by row
or by column.

3. transitionMatrix: the probabilities of the transition matrix.

4. name: optional character element to name the DTMC.

The markovchainList objects are defined by following slots:

1. markovchains: a list of markovchain objects.

2. name: optional character element to name the DTMC.
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The markovchain objects can be created either in a long way, as the following code shows

R> weatherStates <- c("sunny", "cloudy", "rain")

R> byRow <- TRUE

R> weatherMatrix <- matrix(data = c(0.70, 0.2, 0.1,

+ 0.3, 0.4, 0.3,

+ 0.2, 0.45, 0.35), byrow = byRow, nrow = 3,

+ dimnames = list(weatherStates, weatherStates))

R> mcWeather <- new("markovchain", states = weatherStates, byrow = byRow,

+ transitionMatrix = weatherMatrix, name = "Weather")

or in a shorter way, displayed below

R> mcWeather <- new("markovchain", states = c("sunny", "cloudy", "rain"),

+ transitionMatrix = matrix(data = c(0.70, 0.2, 0.1,

+ 0.3, 0.4, 0.3,

+ 0.2, 0.45, 0.35), byrow = byRow, nrow = 3),

+ name = "Weather")

When new("markovchain") is called alone, a default Markov chain is created.

R> defaultMc <- new("markovchain")

The quicker way to create markovchain objects is made possible thanks to the implemented
initialize S4 method that checks that:

❼ the transitionMatrix to be a transition matrix, i.e., all entries to be probabilities and
either all rows or all columns to sum up to one.

❼ the columns and rows names of transitionMatrix to be defined and to coincide with
states vector slot.

The markovchain objects can be collected in a list within markovchainList S4 objects as
following example shows.

R> mcList <- new("markovchainList", markovchains = list(mcWeather, defaultMc),

+ name = "A list of Markov chains")

3.2. Handling markovchain objects

Table 1 lists which methods handle and manipulate markovchain objects.

The examples that follow shows how operations on markovchain objects can be easily per-
formed. For example, using the previously defined matrix we can find what is the probability
distribution of expected weather states in two and seven days, given the actual state to be
cloudy.
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Method Purpose

* Direct multiplication for transition matrices.
[ Direct access to the elements of the transition matrix.
== Equality operator between two transition matrices.
as Operator to convert markovchain objects into data.frame and

table object.
dim Dimension of the transition matrix.
names Equal to states.
names<- Change the states name.
name Get the name of markovchain object.
name<- Change the name of markovchain object.
plot plot method for markovchain objects.
print print method for markovchain objects.
show show method for markovchain objects.
states Name of the transition states.
t Transposition operator (which switches byrow slot value and modifies

the transition matrix coherently).

Table 1: markovchain methods for handling markovchain objects.

R> initialState <- c(0, 1, 0)

R> after2Days <- initialState * (mcWeather * mcWeather)

R> after7Days <- initialState * (mcWeather ^ 7)

R> after2Days

sunny cloudy rain

[1,] 0.39 0.355 0.255

R> round(after7Days, 3)

sunny cloudy rain

[1,] 0.462 0.319 0.219

A similar answer could have been obtained defining the vector of probabilities as a column
vector. A column - defined probability matrix could be set up either creating a new matrix
or transposing an existing markovchain object thanks to the t method.

R> initialState <- c(0, 1, 0)

R> after2Days <- (t(mcWeather) * t(mcWeather)) * initialState

R> after7Days <- (t(mcWeather) ^ 7) * initialState

R> after2Days

[,1]

sunny 0.390

cloudy 0.355

rain 0.255
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R> round(after7Days, 3)

[,1]

sunny 0.462

cloudy 0.319

rain 0.219

The initial state vector previously shown can not necessarily be a probability vector, as the
code that follows shows:

R> fvals<-function(mchain,initialstate,n) {

+ out<-data.frame()

+ names(initialstate)<-names(mchain)

+ for (i in 0:n)

+ {

+ iteration<-initialstate*mchain^(i)

+ out<-rbind(out,iteration)

+ }

+ out<-cbind(out, i=seq(0,n))

+ out<-out[,c(4,1:3)]

+ return(out)

+ }

R> fvals(mchain=mcWeather,initialstate=c(90,5,5),n=4)

i sunny cloudy rain

1 0 90.00000 5.00000 5.00000

2 1 65.50000 22.25000 12.25000

3 2 54.97500 27.51250 17.51250

4 3 50.23875 29.88063 19.88062

5 4 48.10744 30.94628 20.94628

Basic methods have been defined for markovchain objects to quickly get states and transition
matrix dimension.

R> states(mcWeather)

[1] "sunny" "cloudy" "rain"

R> names(mcWeather)

[1] "sunny" "cloudy" "rain"

R> dim(mcWeather)

[1] 3
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Methods are available to set and get the name of markovchain object.

R> name(mcWeather)

[1] "Weather"

R> name(mcWeather) <- "New Name"

R> name(mcWeather)

[1] "New Name"

A direct access to transition probabilities is provided both by transitionProbabilitymethod
and ”[” method.

R> transitionProbability(mcWeather, "cloudy", "rain")

[1] 0.3

R> mcWeather[2,3]

[1] 0.3

The transition matrix of a markovchain object can be displayed using print or show methods
(the latter being less laconic). Similarly, the underlying transition probability diagram can
be plotted by the use of plot method (as shown in Figure 1) which is based on igraph

package (Csardi and Nepusz 2006). plot method for markovchain objects is a wrapper of
plot.igraph for igraph S4 objects defined within the igraph package. Additional parameters
can be passed to plot function to control the network graph layout. There are also diagram

and DiagrammeR ways available for plotting as shown in Figure 2.

R> print(mcWeather)

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

R> show(mcWeather)

New Name

A 3 - dimensional discrete Markov Chain defined by the following states:

sunny, cloudy, rain

The transition matrix (by rows) is defined as follows:

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35
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Weather transition matrix

0.7

0.4

0.35

0.2

0.1

0.3

0.3

0.2

0.45

●

●

●

sunny

cloudy

rain

Figure 1: Weather example. Markov chain plot.



Giorgio Alfredo Spedicato, Tae Seung Kang, Sai Bhargav Yalamanchi, Deepak Yadav 11

0.70.2

0.1

0.3

0.4

0.3
0.2

0.45

0.35

sunnycloudy

rain

Figure 2: Weather example. Markov chain plot with diagram. plot(mcWeather, pack-
age=”diagram”, box.size = 0.04)
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Import and export from some specific classes is possible, as shown in Figure 3 and in the
following code.

R> mcDf <- as(mcWeather, "data.frame")

R> mcNew <- as(mcDf, "markovchain")

R> mcDf

t0 t1 prob

1 sunny sunny 0.70

2 sunny cloudy 0.20

3 sunny rain 0.10

4 cloudy sunny 0.30

5 cloudy cloudy 0.40

6 cloudy rain 0.30

7 rain sunny 0.20

8 rain cloudy 0.45

9 rain rain 0.35

R> mcIgraph <- as(mcWeather, "igraph")

R> library(msm)

R> data(cav)

R> Q <- rbind ( c(0, 0.25, 0, 0.25),

+ c(0.166, 0, 0.166, 0.166),

+ c(0, 0.25, 0, 0.25),

+ c(0, 0, 0, 0) )

R> cavmsm <- msm(state ~ years, subject = PTNUM, data = cav, qmatrix = Q, death = 4)

R> msmMc <- as(cavmsm, "markovchain")

R> msmMc

Unnamed Markov chain

A 4 - dimensional discrete Markov Chain defined by the following states:

State 1, State 2, State 3, State 4

The transition matrix (by rows) is defined as follows:

State 1 State 2 State 3 State 4

State 1 0.853958721 0.08836953 0.01475543 0.04291632

State 2 0.155576908 0.56663284 0.20599563 0.07179462

State 3 0.009903994 0.07853691 0.65965727 0.25190183

State 4 0.000000000 0.00000000 0.00000000 1.00000000

R> library(etm)

R> data(sir.cont)

R> sir.cont <- sir.cont[order(sir.cont$id, sir.cont$time), ]

R> for (i in 2:nrow(sir.cont)) {

+ if (sir.cont$id[i]==sir.cont$id[i-1]) {



Giorgio Alfredo Spedicato, Tae Seung Kang, Sai Bhargav Yalamanchi, Deepak Yadav 13

+ if (sir.cont$time[i]==sir.cont$time[i-1]) {

+ sir.cont$time[i-1] <- sir.cont$time[i-1] - 0.5

+ }

+ }

+ }

R> tra <- matrix(ncol=3,nrow=3,FALSE)

R> tra[1, 2:3] <- TRUE

R> tra[2, c(1, 3)] <- TRUE

R> tr.prob <- etm(sir.cont, c("0", "1", "2"), tra, "cens", 1)

R> tr.prob

Multistate model with 2 transient state(s)

and 1 absorbing state(s)

Possible transitions:

from to

0 1

0 2

1 0

1 2

Estimate of P(1, 183)

0 1 2

0 0 0 1

1 0 0 1

2 0 0 1

Estimate of cov(P(1, 183))

0 0 1 0 2 0 0 1 1 1 2 1 0 2 1 2 2 2

0 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

1 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

2 0 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

0 1 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

1 1 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

2 1 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

0 2 0 0 0 0 0 0 -2.864030e-20 -1.126554e-19 0

1 2 0 0 0 0 0 0 -4.785736e-20 2.710505e-19 0

2 2 0 0 0 0 0 0 0.000000e+00 0.000000e+00 0

R> etm2mc<-as(tr.prob, "markovchain")

R> etm2mc

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

0, 1, 2

The transition matrix (by rows) is defined as follows:

0 1 2
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Import − Export from and to markovchain objects

●

●

●

●

●

●

●

dataframe

markovchain

igraph

matrix

table

msm

etm

Figure 3: The markovchain methods for import and export.

0 0.0000000 0.5000000 0.5000000

1 0.5000000 0.0000000 0.5000000

2 0.3333333 0.3333333 0.3333333

Coerce from matrix method, as the code below shows, represents another approach to create
a markovchain method starting from a given squared probability matrix.

R> myMatr<-matrix(c(.1,.8,.1,.2,.6,.2,.3,.4,.3), byrow=TRUE, ncol=3)

R> myMc<-as(myMatr, "markovchain")

R> myMc

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

s1, s2, s3

The transition matrix (by rows) is defined as follows:

s1 s2 s3
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s1 0.1 0.8 0.1

s2 0.2 0.6 0.2

s3 0.3 0.4 0.3

Non-homogeneous Markov chains can be created with the aid of markovchainList object.
The example that follows arises from health insurance, where the costs associated to pa-
tients in a Continuous Care Health Community (CCHC) are modelled by a non-homogeneous
Markov Chain, since the transition probabilities change by year. Methods explicitly written
for markovchainList objects are: print, show, dim and [.

R> stateNames = c("H", "I", "D")

R> Q0 <- new("markovchain", states = stateNames,

+ transitionMatrix =matrix(c(0.7, 0.2, 0.1,0.1, 0.6, 0.3,0, 0, 1),

+ byrow = TRUE, nrow = 3), name = "state t0")

R> Q1 <- new("markovchain", states = stateNames,

+ transitionMatrix = matrix(c(0.5, 0.3, 0.2,0, 0.4, 0.6,0, 0, 1),

+ byrow = TRUE, nrow = 3), name = "state t1")

R> Q2 <- new("markovchain", states = stateNames,

+ transitionMatrix = matrix(c(0.3, 0.2, 0.5,0, 0.2, 0.8,0, 0, 1),

+ byrow = TRUE,nrow = 3), name = "state t2")

R> Q3 <- new("markovchain", states = stateNames,

+ transitionMatrix = matrix(c(0, 0, 1, 0, 0, 1, 0, 0, 1),

+ byrow = TRUE, nrow = 3), name = "state t3")

R> mcCCRC <- new("markovchainList",markovchains = list(Q0,Q1,Q2,Q3),

+ name = "Continuous Care Health Community")

R> print(mcCCRC)

Continuous Care Health Community list of Markov chain(s)

Markovchain 1

state t0

A 3 - dimensional discrete Markov Chain defined by the following states:

H, I, D

The transition matrix (by rows) is defined as follows:

H I D

H 0.7 0.2 0.1

I 0.1 0.6 0.3

D 0.0 0.0 1.0

Markovchain 2

state t1

A 3 - dimensional discrete Markov Chain defined by the following states:

H, I, D

The transition matrix (by rows) is defined as follows:

H I D

H 0.5 0.3 0.2

I 0.0 0.4 0.6

D 0.0 0.0 1.0
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Markovchain 3

state t2

A 3 - dimensional discrete Markov Chain defined by the following states:

H, I, D

The transition matrix (by rows) is defined as follows:

H I D

H 0.3 0.2 0.5

I 0.0 0.2 0.8

D 0.0 0.0 1.0

Markovchain 4

state t3

A 3 - dimensional discrete Markov Chain defined by the following states:

H, I, D

The transition matrix (by rows) is defined as follows:

H I D

H 0 0 1

I 0 0 1

D 0 0 1

It is possible to perform direct access to markovchainList elements, as well as to determine
the number of markovchain objects by which a markovchainList object is composed.

R> mcCCRC[[1]]

state t0

A 3 - dimensional discrete Markov Chain defined by the following states:

H, I, D

The transition matrix (by rows) is defined as follows:

H I D

H 0.7 0.2 0.1

I 0.1 0.6 0.3

D 0.0 0.0 1.0

R> dim(mcCCRC)

[1] 4

The markovchain package contains some data found in the literature related to DTMCmodels
(see Section 6). Table 2 lists datasets and tables included within the current release of the
package.

Finally, Table 3 lists the demos included in the demo directory of the package.
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Dataset Description

blanden Mobility across income quartiles, Jo Blanden and Machin (2005).
craigsendi CD4 cells, B. A. Craig and A. A. Sendi (2002).
kullback raw transition matrices for testing homogeneity, Kullback, Kupperman, and
preproglucacon Preproglucacon DNA basis, P. J. Avery and D. A. Henderson (1999).
rain Alofi Island rains, P. J. Avery and D. A. Henderson (1999).
holson Individual states trajectiories.
sales Sales of six beverages in Hong Kong.
Ching, Ng, and Fung (2008).

Table 2: The markovchain data.frame and table.

R Code Filee Description

bard.R Structural analysis of Markov chains from Bard PPT.
examples.R Notable Markov chains, e.g., The Gambler Ruin chain.
quickStart.R Generic examples.
extractMatrices.R Generic examples.

Table 3: The markovchain demos.
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4. Probability with markovchain objects

The markovchain package contains functions to analyse DTMC from a probabilistic perspec-
tive. For example, the package provides methods to find stationary distributions and identify-
ing absorbing and transient states. Many of these methods come from MATLAB listings that
have been ported into R. For a full description of the underlying theory and algorithm the
interested reader can overview the original MATLAB listings, Feres (2007) and Montgomery
(2009).

Table 4 shows methods that can be applied on markovchain objects to perform probabilistic
analysis.

Method Returns

absorbingStates the absorbing states of the transition matrix, if any.
steadyStates the vector(s) of steady state(s) in matrix form.
communicatingClasses list of communicating classes.

sj , given actual state si.
canonicForm the transition matrix into canonic form.
is.accessible verification if a state j is reachable from state i.
is.irreducible verification whether a DTMC is irreducible.
period the period of an irreducible DTMC.
recurrentClasses list of recurrent classes.
steadyStates the vector(s) of steady state(s) in matrix form.
summary DTMC summary.
transientStates the transient states of the transition matrix, if any.

Table 4: markovchain methods: statistical operations.

The conditional distribution of weather states, given that current day’s weather is sunny, is
given by following code.

R> conditionalDistribution(mcWeather, "sunny")

sunny cloudy rain

0.7 0.2 0.1

A stationary (steady state) vector is a probability vector such that Equation 11

0 ≤ πj ≤ 1∑
j∈S πj = 1

π ∗ P = π

(11)

Steady states are associated to P eigenvalues equal to one. Therefore the steady states vector
can be identified by the following:

1. decompose the transition matrix in eigenvalues and eigenvectors;

2. consider only eigenvectors corresponding to eigenvalues equal to one;

3. normalize such eigenvalues so that the sum of their components is one.
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Numeric issue (negative values) can arise when the Markov Chain contains more closed classes.
If negative values are found in the initial solution, the above described algorithm is performed
on the submatrix corresponding to recurrent P classes. Another vignette in the package
focuses on this issue.

The result is returned in matrix form.

R> steadyStates(mcWeather)

sunny cloudy rain

[1,] 0.4636364 0.3181818 0.2181818

It is possible for a Markov chain to have more than one stationary distribution, as the gambler
ruin example shows.

R> gamblerRuinMarkovChain <- function(moneyMax, prob = 0.5) {

+ require(matlab)

+ matr <- zeros(moneyMax + 1)

+ states <- as.character(seq(from = 0, to = moneyMax, by = 1))

+ rownames(matr) = states; colnames(matr) = states

+ matr[1,1] = 1; matr[moneyMax + 1,moneyMax + 1] = 1

+ for(i in 2:moneyMax)

+ { matr[i,i-1] = 1 - prob; matr[i, i + 1] = prob }

+ out <- new("markovchain",

+ transitionMatrix = matr,

+ name = paste("Gambler ruin", moneyMax, "dim", sep = " ")

+ )

+ return(out)

+ }

R> mcGR4 <- gamblerRuinMarkovChain(moneyMax = 4, prob = 0.5)

R> steadyStates(mcGR4)

0 1 2 3 4

[1,] 1 0 0 0 0

[2,] 0 0 0 0 1

Absorbing states are determined by means of absorbingStates method.

R> absorbingStates(mcGR4)

[1] "0" "4"

R> absorbingStates(mcWeather)

character(0)

The key function used within Feres (2007) (and markovchain’s derived functions) is
.commclassKernel, that is called below.
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R> .commclassesKernel <- function(P){

+ m <- ncol(P)

+ stateNames <- rownames(P)

+ T <- zeros(m)

+ i <- 1

+ while (i <= m) {

+ a <- i

+ b <- zeros(1,m)

+ b[1,i] <- 1

+ old <- 1

+ new <- 0

+ while (old != new) {

+ old <- sum(find(b > 0))

+ n <- size(a)[2]

+ matr <- matrix(as.numeric(P[a,]), ncol = m,

+ nrow = n)

+ c <- colSums(matr)

+ d <- find(c)

+ n <- size(d)[2]

+ b[1,d] <- ones(1,n)

+ new <- sum(find(b>0))

+ a <- d

+ }

+ T[i,] <- b

+ i <- i+1 }

+ F <- t(T)

+ C <- (T > 0)&(F > 0)

+ v <- (apply(t(C) == t(T), 2, sum) == m)

+ colnames(C) <- stateNames

+ rownames(C) <- stateNames

+ names(v) <- stateNames

+ out <- list(C = C, v = v)

+ return(out)

+ }

The .commclassKernel function gets a transition matrix of dimension n and return a list of
two items:

1. C, an adjacency matrix showing for each state sj (in the row) which states lie in the
same communicating class of sj (flagged with 1).

2. v, a binary vector indicating whether the state sj is transient (0) or not (1).

These functions are used by two other internal functions on which the summary method for
markovchain objects works.

The example matrix used in Feres (2007) well exemplifies the purpose of the function.
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R> P <- matlab::zeros(10)

R> P[1, c(1, 3)] <- 1/2;

R> P[2, 2] <- 1/3; P[2,7] <- 2/3;

R> P[3, 1] <- 1;

R> P[4, 5] <- 1;

R> P[5, c(4, 5, 9)] <- 1/3;

R> P[6, 6] <- 1;

R> P[7, 7] <- 1/4; P[7,9] <- 3/4;

R> P[8, c(3, 4, 8, 10)] <- 1/4;

R> P[9, 2] <- 1;

R> P[10, c(2, 5, 10)] <- 1/3;

R> rownames(P) <- letters[1:10]

R> colnames(P) <- letters[1:10]

R> probMc <- new("markovchain", transitionMatrix = P,

+ name = "Probability MC")

R> .commclassesKernel(P)

$C

a b c d e f g h i j

a TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

b FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

c TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

d FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

e FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

f FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

g FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

h FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

i FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

j FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

$v

a b c d e f g h i j

TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE

R> summary(probMc)

Probability MC Markov chain that is composed by:

Closed classes:

a c

b g i

f

Recurrent classes:

{a,c},{b,g,i},{f}

Transient classes:

{d,e},{h},{j}

The Markov chain is not irreducible

The absorbing states are: f
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All states that pertain to a transient class are named ”transient” and a specific method has
been written to elicit them.

R> transientStates(probMc)

[1] "d" "e" "h" "j"

Listings from Feres (2007) have been adapted into canonicForm method that turns a Markov
chain into canonic form.

R> probMcCanonic <- canonicForm(probMc)

R> probMc

Probability MC

A 10 - dimensional discrete Markov Chain defined by the following states:

a, b, c, d, e, f, g, h, i, j

The transition matrix (by rows) is defined as follows:

a b c d e f g h i

a 0.5 0.0000000 0.50 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

b 0.0 0.3333333 0.00 0.0000000 0.0000000 0 0.6666667 0.00 0.0000000

c 1.0 0.0000000 0.00 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

d 0.0 0.0000000 0.00 0.0000000 1.0000000 0 0.0000000 0.00 0.0000000

e 0.0 0.0000000 0.00 0.3333333 0.3333333 0 0.0000000 0.00 0.3333333

f 0.0 0.0000000 0.00 0.0000000 0.0000000 1 0.0000000 0.00 0.0000000

g 0.0 0.0000000 0.00 0.0000000 0.0000000 0 0.2500000 0.00 0.7500000

h 0.0 0.0000000 0.25 0.2500000 0.0000000 0 0.0000000 0.25 0.0000000

i 0.0 1.0000000 0.00 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

j 0.0 0.3333333 0.00 0.0000000 0.3333333 0 0.0000000 0.00 0.0000000

j

a 0.0000000

b 0.0000000

c 0.0000000

d 0.0000000

e 0.0000000

f 0.0000000

g 0.0000000

h 0.2500000

i 0.0000000

j 0.3333333

R> probMcCanonic

Probability MC

A 10 - dimensional discrete Markov Chain defined by the following states:

a, c, b, g, i, f, d, e, h, j

The transition matrix (by rows) is defined as follows:
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a c b g i f d e h

a 0.5 0.50 0.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

c 1.0 0.00 0.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

b 0.0 0.00 0.3333333 0.6666667 0.0000000 0 0.0000000 0.0000000 0.00

g 0.0 0.00 0.0000000 0.2500000 0.7500000 0 0.0000000 0.0000000 0.00

i 0.0 0.00 1.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

f 0.0 0.00 0.0000000 0.0000000 0.0000000 1 0.0000000 0.0000000 0.00

d 0.0 0.00 0.0000000 0.0000000 0.0000000 0 0.0000000 1.0000000 0.00

e 0.0 0.00 0.0000000 0.0000000 0.3333333 0 0.3333333 0.3333333 0.00

h 0.0 0.25 0.0000000 0.0000000 0.0000000 0 0.2500000 0.0000000 0.25

j 0.0 0.00 0.3333333 0.0000000 0.0000000 0 0.0000000 0.3333333 0.00

j

a 0.0000000

c 0.0000000

b 0.0000000

g 0.0000000

i 0.0000000

f 0.0000000

d 0.0000000

e 0.0000000

h 0.2500000

j 0.3333333

The function is.accessible permits to investigate whether a state sj is accessible from state
si, that is whether the probability to eventually reach sj starting from si is greater than zero.

R> is.accessible(object = probMc, from = "a", to = "c")

[1] TRUE

R> is.accessible(object = probMc, from = "g", to = "c")

[1] FALSE

In Section 2.2 we observed that, if a DTMC is irreducible, all its states share the same
periodicity. Then, the period function returns the periodicity of the DTMC, provided that
it is irreducible. The example that follows shows how to find if a DTMC is reducible or
irreducible by means of the function is.irreducible and, in the latter case, the method
period is used to compute the periodicity of the chain.

R> E <- matrix(0, nrow = 4, ncol = 4)

R> E[1, 2] <- 1

R> E[2, 1] <- 1/3; E[2, 3] <- 2/3

R> E[3,2] <- 1/4; E[3, 4] <- 3/4

R> E[4, 3] <- 1

R> mcE <- new("markovchain", states = c("a", "b", "c", "d"),
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+ transitionMatrix = E,

+ name = "E")

R> is.irreducible(mcE)

[1] TRUE

R> period(mcE)

[1] 2

The example Markov chain found in Mathematica web site (Wolfram Research 2013a) has
been used, and is plotted in Figure 4.

R> require(matlab)

R> mathematicaMatr <- zeros(5)

R> mathematicaMatr[1,] <- c(0, 1/3, 0, 2/3, 0)

R> mathematicaMatr[2,] <- c(1/2, 0, 0, 0, 1/2)

R> mathematicaMatr[3,] <- c(0, 0, 1/2, 1/2, 0)

R> mathematicaMatr[4,] <- c(0, 0, 1/2, 1/2, 0)

R> mathematicaMatr[5,] <- c(0, 0, 0, 0, 1)

R> statesNames <- letters[1:5]

R> mathematicaMc <- new("markovchain", transitionMatrix = mathematicaMatr,

+ name = "Mathematica MC", states = statesNames)

Mathematica MC Markov chain that is composed by:

Closed classes:

c d

e

Recurrent classes:

{c,d},{e}

Transient classes:

{a,b}

The Markov chain is not irreducible

The absorbing states are: e

Feres (2007) provides code to compute first passage time (within 1, 2, . . . , n steps) given the
initial state to be i. The MATLAB listings translated into R on which the firstPassage

function is based are

R> .firstpassageKernel <- function(P, i, n){

+ G <- P

+ H <- P[i,]

+ E <- 1 - diag(size(P)[2])

+ for (m in 2:n) {

+ G <- P %*% (G * E)
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Figure 4: Mathematica 9 example. Markov chain plot.
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+ H <- rbind(H, G[i,])

+ }

+ return(H)

+ }

We conclude that the probability for the first rainy day to be the third one, given that the
current state is sunny, is given by

R> firstPassagePdF <- firstPassage(object = mcWeather, state = "sunny",

+ n = 10)

R> firstPassagePdF[3, 3]

[1] 0.121

5. Statistical analysis

Table 5 lists the functions and methods implemented within the package which help to fit,
simulate and predict DTMC.

Function Purpose

markovchainFit Function to return fitted Markov chain for a given sequence.
predict Method to calculate predictions from markovchain or

markovchainList objects.
rmarkovchain Function to sample from markovchain or markovchainList objects.

Table 5: The markovchain statistical functions.

5.1. Simulation

Simulating a random sequence from an underlying DTMC is quite easy thanks to the function
rmarkovchain. The following code generates a year of weather states according to mcWeather
underlying stochastic process.

R> weathersOfDays <- rmarkovchain(n = 365, object = mcWeather, t0 = "sunny")

R> weathersOfDays[1:30]

[1] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[8] "sunny" "sunny" "sunny" "sunny" "sunny" "sunny" "cloudy"

[15] "sunny" "sunny" "cloudy" "rain" "cloudy" "sunny" "sunny"

[22] "cloudy" "sunny" "sunny" "sunny" "cloudy" "sunny" "cloudy"

[29] "rain" "sunny"

Similarly, it is possible to simulate one or more sequences from a non-homogeneous Markov
chain, as the following code (applied on CCHC example) exemplifies.
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R> patientStates <- rmarkovchain(n = 5, object = mcCCRC, t0 = "H",

+ include.t0 = TRUE)

R> patientStates[1:10,]

iteration values

1 1 H

2 1 I

3 1 D

4 1 D

5 1 D

6 2 H

7 2 H

8 2 H

9 2 I

10 2 D

Two advance parameters are availabe to the rmarkovchain method which helps you decide
which implementation to use. There are four options available : R, R in parallel, C++

and C++ in parallel. Two boolean parameters useRcpp and parallel will decide which
implementation will be used. Default is useRcpp = TRUE and parallel = FALSE i.e. C++

implementation. The C++ implementation is generally faster than the R implementation. If
you have multicore processors then you can take advantage of parallel parameter by setting
it to TRUE. When both Rcpp=TRUE and parallel=TRUE the parallelization has been carried
out using RcppParallel package (Allaire, Francois, Ushey, Vandenbrouck, Geelnard, and Intel
2016).

5.2. Estimation

A time homogeneous Markov chain can be fit from given data. Four methods have been
implemented within current version of markovchain package: maximum likelihood, maximum
likelihood with Laplace smoothing, Bootstrap approach, maximum a posteriori.

Equation 12 shows the maximum likelihood estimator (MLE) of the pij entry, where the nij

element consists in the number sequences (Xt = si, Xt+1 = sj) found in the sample, that is

p̂MLE
ij =

nij

k∑
u=1

niu

. (12)

Equation 13 shows the standardError of the MLE (Skuriat-Olechnowska 2005).

SEij =
p̂MLE
ij√
nij

(13)

R> weatherFittedMLE <- markovchainFit(data = weathersOfDays, method = "mle",name = "Weather

R> weatherFittedMLE$estimate

Weather MLE

A 3 - dimensional discrete Markov Chain defined by the following states:
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cloudy, rain, sunny

The transition matrix (by rows) is defined as follows:

cloudy rain sunny

cloudy 0.3790323 0.29838710 0.3225806

rain 0.4871795 0.34615385 0.1666667

sunny 0.2407407 0.08641975 0.6728395

R> weatherFittedMLE$standardError

cloudy rain sunny

cloudy 0.05528754 0.04905454 0.05100448

rain 0.07903095 0.06661734 0.04622502

sunny 0.03854937 0.02309665 0.06444634

The Laplace smoothing approach is a variation of the MLE, where the nij is substituted by
nij + α (see Equation 14), being α an arbitrary positive stabilizing parameter.

p̂LSij =
nij + α

k∑
u=1

(niu + α)

(14)

R> weatherFittedLAPLACE <- markovchainFit(data = weathersOfDays,

+ method = "laplace", laplacian = 0.01,

+ name = "Weather LAPLACE")

R> weatherFittedLAPLACE$estimate

Weather LAPLACE

A 3 - dimensional discrete Markov Chain defined by the following states:

cloudy, rain, sunny

The transition matrix (by rows) is defined as follows:

cloudy rain sunny

cloudy 0.3790212 0.29839555 0.3225832

rain 0.4871203 0.34614892 0.1667307

sunny 0.2407579 0.08646547 0.6727766

(NOTE: The Confidence Interval option is enabled by default. Remove this option to fasten
computations.) Both MLE and Laplace approach are based on the createSequenceMatrix

functions that converts a data (character) sequence into a contingency table, showing the
(Xt = i,Xt+1 = j) distribution within the sample, as code below shows.

R> createSequenceMatrix(stringchar = weathersOfDays)

cloudy rain sunny

cloudy 47 37 40

rain 38 27 13

sunny 39 14 109
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stringchar could contain NA values, and the transitions containing NA would be ignored.

An issue occurs when the sample contains only one realization of a state (say Xβ) which is
located at the end of the data sequence, since it yields to a row of zero (no sample to estimate
the conditional distribution of the transition). In this case the estimated transition matrix is
corrected assuming pβ,j = 1/k, being k the possible states.

Create sequence matrix can also be used to obtain raw count transition matrices from a given
n ∗ 2 matrix as the following example shows:

R> myMatr<-matrix(c("a","b","b","a","a","b","b","b","b","a","a","a","b","a"),ncol=2)

R> createSequenceMatrix(stringchar = myMatr,toRowProbs = TRUE)

a b

a 0.6666667 0.3333333

b 0.5000000 0.5000000

A bootstrap estimation approach has been developed within the package in order to provide
an indication of the variability of p̂ij estimates. The bootstrap approach implemented within
the markovchain package follows these steps:

1. bootstrap the data sequences following the conditional distributions of states estimated
from the original one. The default bootstrap samples is 10, as specified in nboot pa-
rameter of markovchainFit function.

2. apply MLE estimation on bootstrapped data sequences that are saved in
bootStrapSamples slot of the returned list.

3. the pBOOTSTRAP
ij is the average of all pMLE

ij across the bootStrapSamples list, nor-

malized by row. A standardError of ˆpMLE
ij estimate is provided as well.

R> weatherFittedBOOT <- markovchainFit(data = weathersOfDays,

+ method = "bootstrap", nboot = 20)

R> weatherFittedBOOT$estimate

BootStrap Estimate

A 3 - dimensional discrete Markov Chain defined by the following states:

cloudy, rain, sunny

The transition matrix (by rows) is defined as follows:

cloudy rain sunny

cloudy 0.3884175 0.29402251 0.3175600

rain 0.4723063 0.35580253 0.1718912

sunny 0.2555405 0.07612772 0.6683318

R> weatherFittedBOOT$standardError

cloudy rain sunny

cloudy 0.007832050 0.012821710 0.011835006

rain 0.010778315 0.009417920 0.009383170

sunny 0.008420141 0.005095549 0.008787744
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The bootstrapping process can be done in parallel thanks to RcppParallel package (Allaire
et al. 2016). Parallelized implementation is definitively suggested when the data sample size
or the required number of bootstrap runs is high.

R> weatherFittedBOOTParallel <- markovchainFit(data = weathersOfDays,

+ method = "bootstrap", nboot = 20,

+ parallel = TRUE)

R> weatherFittedBOOTParallel$estimate

R> weatherFittedBOOTParallel$standardError

The parallel bootstrapping uses all the available cores on a machine by default. However, it is
also possible to tune the number of threads used. Note that this should be done in R before
calling the markovchainFit function. For example, the following code will set the number of
threads to 4.

R> RcppParallel::setNumThreads(2)

For more details, please refer to RcppParallel web site.

For all the fitting methods, the logLikelihood (Skuriat-Olechnowska 2005) denoted in Equa-
tion 15 is provided.

LLH =
∑

i,j

nij ∗ log(pij) (15)

where nij is the entry of the frequency matrix and pij is the entry of the transition probability
matrix.

R> weatherFittedMLE$logLikelihood

[1] -347.8699

R> weatherFittedBOOT$logLikelihood

[1] -348.1088

Confidence matrices of estimated parameters (parametric for MLE, non - parametric for
BootStrap) are available as well. The confidenceInterval is provided with the two matrices:
lowerEndpointMatrix and upperEndpointMatrix. The confidence level (CL) is 0.95 by
default and can be given as an argument of the function markovchainFit. This is used
to obtain the standard score (z-score). Equations 16 and 17 (Skuriat-Olechnowska 2005)
show the confidenceInterval of a fitting. Note that each entry of the matrices is bounded
between 0 and 1.

LowerEndpointij = pij − zscore(CL) ∗ SEij (16)

UpperEndpointij = pij + zscore(CL) ∗ SEij (17)
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R> weatherFittedMLE$confidenceInterval

NULL

R> weatherFittedBOOT$confidenceInterval

$confidenceLevel

[1] 0.95

$lowerEndpointMatrix

cloudy rain sunny

cloudy 0.3755349 0.27293267 0.2980931

rain 0.4545775 0.34031143 0.1564572

sunny 0.2416906 0.06774629 0.6538772

$upperEndpointMatrix

cloudy rain sunny

cloudy 0.4013001 0.31511234 0.3370269

rain 0.4900350 0.37129363 0.1873251

sunny 0.2693904 0.08450916 0.6827863

A special function, multinomialConfidenceIntervals, has been written in order to obtain
multinomial wise confidence intervals. The code has been based on and Rcpp translation of
package’s MultinomialCI functions Villacorta (2012) that were themselves based on the Sison
and Glaz (1995) paper.

R> multinomialConfidenceIntervals(transitionMatrix =

+ weatherFittedMLE$estimate@transitionMatrix,

+ countsTransitionMatrix = createSequenceMatrix(weathersOfDays))

$confidenceLevel

[1] 0.95

$lowerEndpointMatrix

cloudy rain sunny

cloudy 0.2903226 0.20967742 0.23387097

rain 0.3846154 0.24358974 0.06410256

sunny 0.1728395 0.01851852 0.60493827

$upperEndpointMatrix

cloudy rain sunny

cloudy 0.4798274 0.3991822 0.4233758

rain 0.6130492 0.4720236 0.2925364

sunny 0.3155597 0.1612387 0.7476585

The functions for fitting DTMC have mostly been rewritten in C++ using Rcpp Eddelbuettel
(2013) since version 0.2.
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It is also possible to fit a DTMC object from matrix or data.frame objects as shown in
following code.

R> data(holson)

R> singleMc<-markovchainFit(data=holson[,2:12],name="holson")

The same applies for markovchainList.

R> mcListFit<-markovchainListFit(data=holson[,2:6],name="holson")

R> mcListFit$estimate

holson list of Markov chain(s)

Markovchain 1

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

1, 2, 3

The transition matrix (by rows) is defined as follows:

1 2 3

1 0.94609164 0.05390836 0.0000000

2 0.26356589 0.62790698 0.1085271

3 0.02325581 0.18604651 0.7906977

Markovchain 2

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

1, 2, 3

The transition matrix (by rows) is defined as follows:

1 2 3

1 0.9323410 0.0676590 0.0000000

2 0.2551724 0.5103448 0.2344828

3 0.0000000 0.0862069 0.9137931

Markovchain 3

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

1, 2, 3

The transition matrix (by rows) is defined as follows:

1 2 3

1 0.94765840 0.04820937 0.004132231

2 0.26119403 0.66417910 0.074626866

3 0.01428571 0.13571429 0.850000000

Markovchain 4

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

1, 2, 3

The transition matrix (by rows) is defined as follows:
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1 2 3

1 0.9172414 0.07724138 0.005517241

2 0.1678322 0.60839161 0.223776224

3 0.0000000 0.03030303 0.969696970

Finally, given a list object, it is possible to fit a markovchain object or to obtain the raw
transition matrix.

R> c1<-c("a","b","a","a","c","c","a")

R> c2<-c("b")

R> c3<-c("c","a","a","c")

R> c4<-c("b","a","b","a","a","c","b")

R> c5<-c("a","a","c","b")

R> c6<-c("b","c","b","c","a")

R> mylist<-list(c1,c2,c3,c4,c5,c6)

R> mylistMc<-markovchainFit(data=mylist)

R> mylistMc

$estimate

MLE Fit

A 3 - dimensional discrete Markov Chain defined by the following states:

a, b, c

The transition matrix (by rows) is defined as follows:

a b c

a 0.4000000 0.2000000 0.4000000

b 0.6000000 0.0000000 0.4000000

c 0.4285714 0.4285714 0.1428571

$standardError

a b c

a 0.2000000 0.1414214 0.2000000

b 0.3464102 0.0000000 0.2828427

c 0.2474358 0.2474358 0.1428571

$confidenceLevel

[1] 0.95

$lowerEndpointMatrix

a b c

a 0.07102927 0.00000000 0.07102927

b 0.03020599 0.00000000 0.00000000

c 0.02157571 0.02157571 0.00000000

$upperEndpointMatrix

a b c

a 0.7289707 0.4326174 0.7289707
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b 1.0000000 0.0000000 0.8652349

c 0.8355672 0.8355672 0.3778362

The same works for markovchainFitList.

R> markovchainListFit(data=mylist)

$estimate

list of Markov chain(s)

Markovchain 1

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

a, b, c

The transition matrix (by rows) is defined as follows:

a b c

a 0.5 0.5 0.0

b 0.5 0.0 0.5

c 1.0 0.0 0.0

Markovchain 2

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

a, b, c

The transition matrix (by rows) is defined as follows:

a b c

a 0.3333333 0.3333333 0.3333333

b 1.0000000 0.0000000 0.0000000

c 0.0000000 1.0000000 0.0000000

Markovchain 3

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

a, b, c

The transition matrix (by rows) is defined as follows:

a b c

a 0.5 0 0.5

b 0.5 0 0.5

c 0.0 1 0.0

Markovchain 4

Unnamed Markov chain

A 2 - dimensional discrete Markov Chain defined by the following states:

a, c

The transition matrix (by rows) is defined as follows:

a c

a 0.5 0.5

c 1.0 0.0
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Markovchain 5

Unnamed Markov chain

A 2 - dimensional discrete Markov Chain defined by the following states:

a, c

The transition matrix (by rows) is defined as follows:

a c

a 0 1

c 0 1

Markovchain 6

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain defined by the following states:

a, b, c

The transition matrix (by rows) is defined as follows:

a b c

a 0.3333333 0.3333333 0.3333333

b 0.3333333 0.3333333 0.3333333

c 0.5000000 0.5000000 0.0000000

If any transition contains NA, it will be ignored in the results.

5.3. Prediction

The n-step forward predictions can be obtained using the predict methods explicitly written
for markovchain and markovchainList objects. The prediction is the mode of the conditional
distribution of Xt+1 given Xt = sj , being sj the last realization of the DTMC (homogeneous
or non-homogeneous).

Predicting from a markovchain object

The 3-days forward predictions from markovchain object can be generated as follows, assum-
ing that the last two days were respectively ”cloudy” and ”sunny”.

R> predict(object = weatherFittedMLE$estimate, newdata = c("cloudy", "sunny"),

+ n.ahead = 3)

[1] "sunny" "sunny" "sunny"

Predicting from a markovchainList object

Given an initial two year Healty status, the 5-year ahead prediction of any CCRC guest is

R> predict(mcCCRC, newdata = c("H", "H"), n.ahead = 5)

[1] "H" "D" "D"
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The prediction has stopped at time sequence since the underlying non-homogeneous Markov
chain has a length of four. In order to continue five years ahead, the continue=TRUE parameter
setting makes the predict method keeping to use the last markovchain in the sequence list.

R> predict(mcCCRC, newdata = c("H", "H"), n.ahead = 5, continue = TRUE)

[1] "H" "D" "D" "D" "D"

5.4. Statistical Tests

In this section, we describe the statistical tests: assessing the Markov property (verifyMarkovProperty),
the order (assessOrder), the statinarity (assessStationarity) of a Markov chain sequence,
and the divergence test for empirically estimated transition matrices (divergenceTest). Most
of such tests are based on the χ2 statistics. Relevand references are Kullback et al. (1962)
and Anderson and Goodman (1957).

Assessing the Markov property of a Markov chain sequence

The verifyMarkovProperty function verifies whether the Markov property holds for the
given chain. The test implemented in the package looks at triplets of successive observations.
If x1, x2, . . . , xN is a set of observations and nijk is the number of times t (1 ≤ t ≤ N − 2) such
that xt = i, xt+1 = j, xx+2 = k, then if the Markov property holds nijk follows a Binomial
distribution with parameters nij and pjk. A classical χ2 test can check this distributional

assumption, since
∑

i

∑
j

∑
k

nijk−nij ˆpjk
nij ˆpjk

∼ χ2
(
|S|3

)
where |S| is the cardinality of the state

space.

R> sample_sequence<-c("a", "b", "a", "a", "a", "a", "b", "a", "b", "a",

+ "b", "a", "a", "b", "b", "b", "a")

R> verifyMarkovProperty(sample_sequence)

Testing markovianity property on given data sequence

ChiSq statistic is: 0.28 degrees of freedom are: 8 and corresponding p-value is: 0.9999857

Assessing the order of a Markov chain sequence

The assessOrder function checks whether the given chain is of first order or of second order.
For each possible present state, we construct a contingency table of the frequency of the future
state for each past to present state transition as shown in Table 6.

past present future future
a b

a a 2 2
b a 2 2

Table 6: Contingency table to assess the order for the present state a.
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Using the table, the function performs the χ2 test by calling the chisq.test function. This
test returns a list of the chi-squared value and the p-value. If the p-value is greater than the
given significance level, we cannot reject the hypothesis that the sequence is of first order.

R> data(rain)

R> assessOrder(rain$rain)

The assessOrder test statistic is: 26.09575 the Chi-Square d.f. are: 12 the p-value is:

Assessing the stationarity of a Markov chain sequence

The assessStationarity function assesses if the transition probabilities of the given chain
change over time. To be more specific, the chain is stationary if the following condition meets.

pij(t) = pij for all t (18)

For each possible state, we construct a contingency table of the estimated transition proba-
bilities over time as shown in Table 7.

time (t) probability of transition to a probability of transition to b

1 0 1
2 0 1
. . .
. . .
. . .
16 0.44 0.56

Table 7: Contingency table to assess the stationarity of the state a.

Using the table, the function performs the χ2 test by calling the chisq.test function. This
test returns a list of the chi-squared value and the p-value. If the p-value is greater than the
given significance level, we cannot reject the hypothesis that the sequence is stationary.

R> assessStationarity(rain$rain, 10)

The assessStationarity test statistic is: 4.181815 the Chi-Square d.f. are: 54 the p-value

Divergence tests for empirically estimated transition matrices

This section discusses tests developed to verify whether:

1. An empirical transition matrix is consistent with a theoretical one. 2. Two or more
empirical transition matrices belongs to the same DTMC.

The first test is implemented by the verifyEmpiricalToTheoretical function. Bein fij

the raw transition count, Kullback et al. (1962) shows that 2 ∗
∑r

i=1

∑r
j=1 fij ln

fij
fi.P (Ej |Ei)

∼
χ2 (r ∗ (r − 1)). The following example is taken from Kullback et al. (1962):
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R> sequence<-c(0,1,2,2,1,0,0,0,0,0,0,1,2,2,2,1,0,0,1,0,0,0,0,0,0,1,1,

+ 2,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,2,1,0,

+ 0,2,1,0,0,0,0,0,0,1,1,1,2,2,0,0,2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,0,2,

+ 0,1,1,0,0,0,1,2,2,0,0,0,0,0,0,2,2,2,1,1,1,1,0,1,1,1,1,0,0,2,1,1,

+ 0,0,0,0,0,2,2,1,1,1,1,1,2,1,2,0,0,0,1,2,2,2,0,0,0,1,1)

R> mc=matrix(c(5/8,1/4,1/8,1/4,1/2,1/4,1/4,3/8,3/8),byrow=TRUE, nrow=3)

R> rownames(mc)<-colnames(mc)<-0:2; theoreticalMc<-as(mc, "markovchain")

R> verifyEmpiricalToTheoretical(data=sequence,object=theoreticalMc)

Testing whether the

0 1 2

0 51 11 8

1 12 31 9

2 6 11 10

transition matrix is compatible with

0 1 2

0 0.625 0.250 0.125

1 0.250 0.500 0.250

2 0.250 0.375 0.375

[1] "theoretical transition matrix"

ChiSq statistic is 6.551795 d.o.f are 6 corresponding p-value is 0.3642899

$statistic

0

6.551795

$dof

[1] 6

$pvalue

0

0.3642899

The second one is implemented by the verifyHomogeneity function. Assuming that i =
1, 2, . . . , s DTMC samples are available and that the cardinality of the state space is r it verifies
whether the s chains belongs to the same unknown one. Kullback et al. (1962) shows that its

test statistics follows a chi-square law, 2 ∗
∑s

i=1

∑r
j=1

∑r
k=1 fijk ln

n∗fijk
fi..f.jk

∼ χ2 (r ∗ (r − 1)).

Also the following example is taken from Kullback et al. (1962):

R> data(kullback)

R> verifyHomogeneity(inputList=kullback,verbose=TRUE)

Testing homogeneity of DTMC underlying input list

ChiSq statistic is 275.9963 d.o.f are 35 corresponding p-value is 0

$statistic

[1] 275.9963
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$dof

[1] 35

$pvalue

[1] 0

5.5. Continuous Times Markov Chains

Intro

Themarkovchain package provides functionality for continuous time Markov chains (CTMCs).
CTMCs are a generalisation of discrete time Markov chains (DTMCs) in that we allow time
to be continuous. We assume a finite state space S (for an infinite state space wouldn’t fit in
memory). We can think of CTMCs as Markov chains in which state transitions can happen
at any time.

More formally, we would like our CTMCs to satisfy the following two properties:

❼ The Markov property - let FX(s) denote the information about X upto time s. Let
j ∈ S and s ≤ t. Then, P (X(t) = j|FX(s)) = P (X(t) = j|X(s)).

❼ Time homogenity - P (X(t) = j|X(s) = k) = P (X(t− s) = j|X(0) = k).

If both the above properties are satisfied, it is referred to as a time-homogeneous CTMC. If
a transition occurs at time t, then X(t) denotes the new state and X(t) 6= X(t−).

Now, letX(0) = x and let Tx be the time a transition occurs from this state. We are interested
in the distribution of Tx. For s, t ≥ 0, it can be shown that P (Tx > s+ t|Tx > s) = P (Tx > t)

This is the memory less property that only the exponential random variable exhibits. There-
fore, this is the sought distribution, and each state s ∈ S has an exponential holding parameter
λ(s). Since ETx = 1

λ(x) , higher the rate λ(x), smaller the expected time of transitioning out
of the state x.

However, specifying this parameter alone for each state would only paint an incomplete picture
of our CTMC. To see why, consider a state x that may transition to either state y or z. The
holding parameter enables us to predict when a transition may occur if we start off in state
x, but tells us nothing about which state will be next.

To this end, we also need transition probabilities associated with the process, defined as
follows (for y 6= x) - pxy = P (X(Ts) = y|X(0) = x) Note that

∑
y 6=x pxy = 1. Let Q denote

this transition matrix (Qij = pij). What is key here is that Tx and the state y are independent
random variables. Let’s define λ(x, y) = λ(x)pxy

We now look at Kolmogorov’s backward equation. Let’s define Pij(t) = P (X(t) = j|X(0) = i)
for i, j ∈ S. The backward equation is given by (it can be proved) Pij(t) = δije

−λ(i)t +∫ t
0 λ(i)e

−λ(i)t
∑

k 6=iQikPkj(t − s)ds Basically, the first term is non-zero if and only if i = j
and represents the probability that the first transition from state i occurs after time t. This
would mean that at t, the state is still i. The second term accounts for any transitions that
may occur before time t and denotes the probability that at time t, when the smoke clears,
we are in state j.
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This equation can be represented compactly as follows P ′(t) = AP (t) where A is the generator

matrix. A(i, j) =

{
λ(i, j) if i 6= j

−λ(i) else.
Observe that the sum of each row is 0. A CTMC can be

completely specified by the generator matrix.

Stationary Distributions

The following theorem guarantees the existence of a unique stationary distribution for CTMCs.
Note that X(t) being irreducible and recurrent is the same as Xn(t) being irreducible and
recurrent.

Suppose that X(t) is irreducible and recurrent. Then X(t) has an invariant measure η, which
is unique up to multiplicative factors. Moreover, for each k ∈ S, we have

ηk = πk

λ(k)

where π is the unique invariant measure of the embedded discrete time Markov chain Xn.
Finally, η satisfies

0 < ηj < ∞, ∀j ∈ S

and if
∑

i ηi < ∞ then η can be normalised to get a stationary distribution.

Estimation

Let the data set be D = {(s0, t0), (s1, t1), ..., (sN−1, tN−1)} where N = |D|. Each si is a
state from the state space S and during the time [ti, ti+1] the chain is in state si. Let the
parameters be represented by θ = {λ, P} where λ is the vector of holding parameters for each
state and P the transition matrix of the embedded discrete time Markov chain.

Then the probability is given by Pr(D|θ) ∝ λ(s0)e
−λ(s0)(t1−t0)Pr(s1|s0) . λ(s1)e−λ(s1)(t2−t1)Pr(s2|s1) ... λ(sN−

Let n(j|i) denote the number of i-¿j transitions in D, and n(i) the number of times si occurs
in D. Let t(si) denote the total time the chain spends in state si.

Then the MLEs are given by ˆλ(s) = n(s)
t(s) ,

ˆPr(j|i) = n(j|i)
n(i)

Examples

To create a CTMC object, you need to provide a valid generator matrix, say Q. The CTMC
object has the following slots - states, generator, byrow, name (look at the documentation
object for further details). Consider the following example in which we aim to model the
transition of a molecule from the σ state to the σ∗ state. When in the former state, if it
absorbs sufficient energy, it can make the jump to the latter state and remains there for some
time before transitioning back to the original state. Let us model this by a CTMC:

R> energyStates <- c("sigma", "sigma_star")

R> byRow <- TRUE

R> gen <- matrix(data = c(-3, 3,

+ 1, -1), nrow = 2,

+ byrow = byRow, dimnames = list(energyStates, energyStates))

R> molecularCTMC <- new("ctmc", states = energyStates,

+ byrow = byRow, generator = gen,

+ name = "Molecular Transition Model")
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To generate random CTMC transitions, we provide an initial distribution of the states. This
must be in the same order as the dimnames of the generator. The output can be returned
either as a list or a data frame.

R> statesDist <- c(0.8, 0.2)

R> rctmc(n = 3, ctmc = molecularCTMC, initDist = statesDist, out.type = "df", include.T0 =

states time

1 sigma 0.839708235072804

2 sigma_star 0.932185871656202

3 sigma 2.45310400803475

n represents the number of samples to generate. There is an optional argument T for rctmc.
It represents the time of termination of the simulation. To use this feature, set n to a very
high value, say Inf (since we do not know the number of transitions before hand) and set T
accordingly.

R> statesDist <- c(0.8, 0.2)

R> rctmc(n = Inf, ctmc = molecularCTMC, initDist = statesDist, T = 2)

[[1]]

[1] "sigma" "sigma_star" "sigma" "sigma_star" "sigma"

[6] "sigma_star"

[[2]]

[1] 0.0000000 0.1439937 0.3352246 1.2313218 1.2889825 1.4448601

To obtain the stationary distribution simply invoke the steadyStates function

R> steadyStates(molecularCTMC)

sigma sigma_star

[1,] 0.25 0.75

For fitting, use the ctmcFit function. It returns the MLE values for the parameters along
with the confidence intervals.

R> data <- list(c("a", "b", "c", "a", "b", "a", "c", "b", "c"),

+ c(0, 0.8, 2.1, 2.4, 4, 5, 5.9, 8.2, 9))

R> ctmcFit(data)

$estimate

An object of class "ctmc"

Slot "states":

[1] "a" "b" "c"
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Slot "byrow":

[1] TRUE

Slot "generator":

a b c

a -0.9090909 0.6060606 0.3030303

b 0.3225806 -0.9677419 0.6451613

c 0.3846154 0.3846154 -0.7692308

Slot "name":

[1] ""

$errors

$errors$dtmcConfidenceInterval

$errors$dtmcConfidenceInterval$confidenceLevel

[1] 0.95

$errors$dtmcConfidenceInterval$lowerEndpointMatrix

a b c

a 0 0 0

b 0 0 0

c 0 0 0

$errors$dtmcConfidenceInterval$upperEndpointMatrix

a b c

a 0.0000000 1 0.8816179

b 0.8816179 0 1.0000000

c 1.0000000 1 0.0000000

$errors$lambdaConfidenceInterval

$errors$lambdaConfidenceInterval$lowerEndpointVector

[1] 0.04576665 0.04871934 0.00000000

$errors$lambdaConfidenceInterval$upperEndpointVector

[1] 1 1 1

One approach to obtain the generator matrix is to apply the logm function from the expm

package on a transition matrix. Numeric issues arise, see Israel, Rosenthal, and Wei (2001).
For example, applying the standard method (’Higham08’) on mcWeather raises an error, whilst
the alternative method (eigenvalue decomposition) is ok. The following code estimates the
generator matrix of the mcWeather transition matrix.

R> mcWeatherQ <- expm::logm(mcWeather@transitionMatrix,method=✬Eigen✬)

R> mcWeatherQ
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sunny cloudy rain

sunny -0.863221 2.428723 -1.565502

cloudy 4.284592 -20.116312 15.831720

rain -4.414019 24.175251 -19.761232

Therefore, the ”half - day” transition probability for mcWeather DTMC is

R> mcWeatherHalfDayTM <- expm::expm(mcWeatherQ*.5)

R> mcWeatherHalfDay <- new("markovchain",transitionMatrix=mcWeatherHalfDayTM,name="Half Day

R> mcWeatherHalfDay

Half Day Weather Transition Matrix

A 3 - dimensional discrete Markov Chain defined by the following states:

sunny, cloudy, rain

The transition matrix (by rows) is defined as follows:

sunny cloudy rain

sunny 0.81598647 0.1420068 0.04200677

cloudy 0.21970167 0.4401492 0.34014916

rain 0.07063048 0.5146848 0.41468476

5.6. Bayesian Estimation

The markovchain package provides functionality for maximum a posteriori (MAP) estimation
of the chain parameters (at the time of writing this document, only first order models are
supported) by Bayesian inference. It also computes the probability of observing a new data
set, given a (different) data set. This vignette provides the mathematical description for the
methods employed by the package.

Notation and set-up

The data is denoted by D, the model parameters (transition matrix) by θ. The object of
interest is P (θ|D) (posterior density). A represents an alphabet class, each of whose members
represent a state of the chain. Therefore

D = s0s1...sN−1, st ∈ A

where N is the length of the data set. Also,

θ = {p(s|u), s ∈ A, u ∈ A}

where
∑

s∈A p(s|u) = 1 for each u ∈ A.

Our objective is to find θ which maximises the posterior. That is, if our solution is denoted
by θ̂, then

θ̂ = argmax
θ

P (θ|D)
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where the search space is the set of right stochastic matrices of dimension |A|x|A|.
n(u, s) denotes the number of times the word us occurs in D and n(u) =

∑
s∈A n(u, s). The

hyperparameters are similarly denoted by α(u, s) and α(u) respectively.

Methods

Given D, its likelihood conditioned on the observed initial state in D is given by

P (D|θ) =
∏

s∈A

∏

u∈A

p(s|u)n(u,s)

Conjugate priors are used to model the prior P (θ). The reasons are two fold:

1. Exact expressions can be derived for the MAP estimates, expectations and even vari-
ances

2. Model order selection/comparison can be implemented easily (available in a future re-
lease of the package)

The hyperparameters determine the form of the prior distribution, which is a product of
Dirichlet distributions

P (θ) =
∏

u∈A

{ Γ(α(u))∏
s∈A Γ(α(u, s))

∏

s∈A

p(s|u)α(u,s))−1
}

where Γ(.) is the Gamma function. The hyperparameters are specified using the hyperparam
argument in the markovchainFit function. If this argument is not specified, then a default
value of 1 is assigned to each hyperparameter resulting in the prior distribution of each chain
parameter to be uniform over [0, 1].

Given the likelihood and the prior as described above, the evidence P (D) is simply given by

P (D) =

∫
P (D|θ)P (θ)dθ

which simplifies to

P (D) =
∏

u∈A

{ Γ(α(u))∏
s∈A Γ(α(u, s))

∏
s∈A Γ(n(u, s) + α(u, s))

Γ(α(u) + n(u))

}

Using Bayes’ theorem, the posterior now becomes (thanks to the choice of conjugate priors)

P (θ|D) =
∏

u∈A

{ Γ(n(u) + α(u))∏
s∈A Γ(n(u, s) + α(u, s))

∏

s∈A

p(s|u)n(u,s)+α(u,s))−1
}

Since this is again a product of Dirichlet distributions, the marginalised distribution of a
particular parameter P (s|u) of our chain is given by

P (s|u) ∼ Beta(n(u, s) + α(u, s), n(u) + α(u)− n(u, s)− α(u, s))
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Thus, the MAP estimate θ̂ is given by

θ̂ =
{n(u, s) + α(u, s)− 1

n(u) + α(u)− |A| , s ∈ A, u ∈ A
}

The function also returns the expected value, given by

Epostp(s|u) =
{n(u, s) + α(u, s)

n(u) + α(u)
, s ∈ A, u ∈ A

}

The variance is given by

Varpostp(s|u) =
n(u, s) + α(u, s)

(n(u) + α(u))2
n(u) + α(u)− n(u, s)− α(u, s)

n(u) + α(u) + 1

The square root of this quantity is the standard error, which is returned by the function.

The confidence intervals are constructed by computing the inverse of the beta integral.

Predictive distribution

Given the old data set, the probability of observing new data is P (D′|D) where D′ is the new
data set. Let m(u, s),m(u) denote the corresponding counts for the new data. Then,

P (D′|D) =

∫
P (D′|θ)P (θ|D)dθ

We already know the expressions for both quantities in the integral and it turns out to be
similar to evaluating the evidence

P (D′|D) =
∏

u∈A

{ Γ(α(u))∏
s∈A Γ(α(u, s))

∏
s∈A Γ(n(u, s) +m(u, s) + α(u, s))

Γ(α(u) + n(u) +m(u))

}

Choosing the hyperparameters

The hyperparameters model the shape of the parameters’ prior distribution. These must
be provided by the user. The package offers functionality to translate a given prior belief
transition matrix into the hyperparameter matrix. It is assumed that this belief matrix
corresponds to the mean value of the parameters. Since the relation

Epriorp(s|u) =
α(u, s)

α(u)

holds, the function accepts as input the belief matrix as well as a scaling vector (serves as a
proxy for α(.)) and proceeds to compute α(., .).

Alternatively, the function accepts a data sample and infers the hyperparameters from it.
Since the mode of a parameter (with respect to the prior distribution) is proportional to one
less than the corresponding hyperparameter, we set

α(u, s)− 1 = m(u, s)
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where m(u, s) is the u− > s transition count in the data sample. This is regarded as a ’fake
count’ which helps α(u, s) to reflect knowledge of the data sample.

Usage and examples

R> weatherStates <- c("sunny", "cloudy", "rain")

R> byRow <- TRUE

R> weatherMatrix <- matrix(data = c(0.7, 0.2, 0.1,

+ 0.3, 0.4, 0.3,

+ 0.2, 0.4, 0.4),

+ byrow = byRow, nrow = 3,

+ dimnames = list(weatherStates, weatherStates))

R> mcWeather <- new("markovchain", states = weatherStates,

+ byrow = byRow, transitionMatrix = weatherMatrix,

+ name = "Weather")

R> weathersOfDays <- rmarkovchain(n = 365, object = mcWeather, t0 = "sunny")

For the purpose of this section, we shall continue to use the weather of days example intro-
duced in the main vignette of the package (reproduced above for convenience).

Let us invoke the fit function to estimate the MAP parameters with 92% confidence bounds
and hyperparameters as shown below, based on the first 200 days of the weather data. Ad-
ditionally, let us find out what the probability is of observing the weather data for the next
165 days. The usage would be as follows

R> hyperMatrix<-matrix(c(1, 1, 2,

+ 3, 2, 1,

+ 2, 2, 3),

+ nrow = 3, byrow = TRUE,

+ dimnames = list(weatherStates,weatherStates))

R> markovchainFit(weathersOfDays[1:200], method = "map",

+ confidencelevel = 0.92, hyperparam = hyperMatrix)

$estimate

Bayesian Fit

A 3 - dimensional discrete Markov Chain defined by the following states:

cloudy, rain, sunny

The transition matrix (by rows) is defined as follows:

cloudy rain sunny

cloudy 0.4307692 0.33846154 0.2307692

rain 0.2833333 0.48333333 0.2333333

sunny 0.2317073 0.09756098 0.6707317

$expectedValue

cloudy rain sunny

cloudy 0.4264706 0.3382353 0.2352941
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rain 0.2857143 0.4761905 0.2380952

sunny 0.2352941 0.1058824 0.6588235

$standardError

[,1] [,2] [,3]

[1,] 0.05953849 0.05695564 0.05106557

[2,] 0.05646924 0.06242910 0.05323971

[3,] 0.04574078 0.03317874 0.05112400

$confidenceInterval

$confidenceInterval$confidenceLevel

[1] 0.92

$confidenceInterval$lowerEndpointMatrix

[,1] [,2] [,3]

[1,] 0.3405624 0.2485242 0.1431451

[2,] 0.1913584 0.3883767 0.1423703

[3,] 0.1530883 0.0000000 0.5856034

$confidenceInterval$upperEndpointMatrix

[,1] [,2] [,3]

[1,] 0.5754446 0.451546 0.3209113

[2,] 0.3885752 1.000000 0.3275604

[3,] 0.3124846 0.155173 1.0000000

$logLikelihood

[1] -190.4026

R> predictiveDistribution(weathersOfDays[1:200],

+ weathersOfDays[201:365],hyperparam = hyperMatrix)

[1] -161.8695

The results should not change after permuting the dimensions of the matrix.

R> hyperMatrix2<- hyperMatrix[c(2,3,1), c(2,3,1)]

R> markovchainFit(weathersOfDays[1:200], method = "map",

+ confidencelevel = 0.92, hyperparam = hyperMatrix2)

$estimate

Bayesian Fit

A 3 - dimensional discrete Markov Chain defined by the following states:

cloudy, rain, sunny

The transition matrix (by rows) is defined as follows:

cloudy rain sunny



48 The markovchain package

cloudy 0.4307692 0.33846154 0.2307692

rain 0.2833333 0.48333333 0.2333333

sunny 0.2317073 0.09756098 0.6707317

$expectedValue

cloudy rain sunny

cloudy 0.4264706 0.3382353 0.2352941

rain 0.2857143 0.4761905 0.2380952

sunny 0.2352941 0.1058824 0.6588235

$standardError

[,1] [,2] [,3]

[1,] 0.05953849 0.05695564 0.05106557

[2,] 0.05646924 0.06242910 0.05323971

[3,] 0.04574078 0.03317874 0.05112400

$confidenceInterval

$confidenceInterval$confidenceLevel

[1] 0.92

$confidenceInterval$lowerEndpointMatrix

[,1] [,2] [,3]

[1,] 0.3405624 0.2485242 0.1431451

[2,] 0.1913584 0.3883767 0.1423703

[3,] 0.1530883 0.0000000 0.5856034

$confidenceInterval$upperEndpointMatrix

[,1] [,2] [,3]

[1,] 0.5754446 0.451546 0.3209113

[2,] 0.3885752 1.000000 0.3275604

[3,] 0.3124846 0.155173 1.0000000

$logLikelihood

[1] -190.4026

R> predictiveDistribution(weathersOfDays[1:200],

+ weathersOfDays[201:365],hyperparam = hyperMatrix2)

[1] -161.8695

R>

Note that the predictive probability is very small. However, this can be useful when comparing
model orders.
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Suppose we have an idea of the (prior) transition matrix corresponding to the expected value
of the parameters, and have a data set from which we want to deduce the MAP estimates.
We can infer the hyperparameters from this known transition matrix itself, and use this to
obtain our MAP estimates.

R> inferHyperparam(transMatr = weatherMatrix, scale = c(10, 10, 10))

$scaledInference

cloudy rain sunny

cloudy 4 3 3

rain 4 4 2

sunny 2 1 7

Alternatively, we can use a data sample to infer the hyperparameters.

R> inferHyperparam(data = weathersOfDays[1:15])

$dataInference

cloudy rain sunny

cloudy 1 3 1

rain 2 5 3

sunny 3 2 3

In order to use the inferred hyperparameter matrices, we do

R> hyperMatrix3 <- inferHyperparam(transMatr = weatherMatrix, scale = c(10, 10, 10))

R> hyperMatrix3 <- hyperMatrix3$scaledInference

R> hyperMatrix4 <- inferHyperparam(data = weathersOfDays[1:15])

R> hyperMatrix4 <- hyperMatrix4$dataInference

Now we can safely use hyperMatrix3 and hyperMatrix4 with markovchainFit (in the
hyperparam argument).

Supposing we don’t provide any hyperparameters, then the prior is uniform. This is the same
as maximum likelihood.

R> data(preproglucacon)

R> preproglucacon <- preproglucacon[[2]]

R> MLEest <- markovchainFit(preproglucacon, method = "mle")

R> MAPest <- markovchainFit(preproglucacon, method = "map")

R> MLEest$estimate

MLE Fit

A 4 - dimensional discrete Markov Chain defined by the following states:

A, C, G, T

The transition matrix (by rows) is defined as follows:

A C G T

A 0.3585271 0.1434109 0.16666667 0.3313953

C 0.3840304 0.1558935 0.02281369 0.4372624

G 0.3053097 0.1991150 0.15044248 0.3451327

T 0.2844523 0.1819788 0.17667845 0.3568905
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R> MAPest$estimate

Bayesian Fit

A 4 - dimensional discrete Markov Chain defined by the following states:

A, C, G, T

The transition matrix (by rows) is defined as follows:

A C G T

A 0.3585271 0.1434109 0.16666667 0.3313953

C 0.3840304 0.1558935 0.02281369 0.4372624

G 0.3053097 0.1991150 0.15044248 0.3451327

T 0.2844523 0.1819788 0.17667845 0.3568905

5.7. Higher Order Markov Chains

Continuous time Markov chains are discussed in the CTMC vignette which is a part of the
package.

An experimental fitHigherOrder function has been written in order to fit a higher order
Markov chain (Ching, Huang, Ng, and Siu (2013); Ching et al. (2008)). It takes a sequence
and the order as arguments and returns the frequency probability vector X of the given
sequence and the parameters λi with the transition probability matrices Qi for each order i.
Its quadratic programming problem is solved using solnp function of Rsolnp, Ghalanos and
Theussl (2014).

R> library(Rsolnp)

R> data(rain)

R> fitHigherOrder(rain$rain, 2)

$lambda

[1] 0.5 0.5

$Q

$Q[[1]]

0 1-5 6+

0 0.6605839 0.4625850 0.1976285

1-5 0.2299270 0.3061224 0.3122530

6+ 0.1094891 0.2312925 0.4901186

$Q[[2]]

0 1-5 6+

0 0.6021898 0.4489796 0.3412698

1-5 0.2445255 0.2687075 0.3214286

6+ 0.1532847 0.2823129 0.3373016

$X
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0 1-5 6+

0.5000000 0.2691606 0.2308394

R> fitHigherOrder(rain$rain, 3)

$lambda

[1] 0.3333333 0.3333333 0.3333333

$Q

$Q[[1]]

0 1-5 6+

0 0.6605839 0.4625850 0.1976285

1-5 0.2299270 0.3061224 0.3122530

6+ 0.1094891 0.2312925 0.4901186

$Q[[2]]

0 1-5 6+

0 0.6021898 0.4489796 0.3412698

1-5 0.2445255 0.2687075 0.3214286

6+ 0.1532847 0.2823129 0.3373016

$Q[[3]]

0 1-5 6+

0 0.5693431 0.4455782 0.4183267

1-5 0.2536496 0.2891156 0.2749004

6+ 0.1770073 0.2653061 0.3067729

$X

0 1-5 6+

0.5000000 0.2691606 0.2308394

5.8. Higher Order Multivariate Markov Chains

Introduction

HOMMC model is used for modeling behaviour of multiple categorical sequences generated
by similar sources. The main reference is Ching et al. (2008). Assume that there are s cate-
gorical sequences and each has possible states in M. In nth order MMC the state probability
distribution of the jth sequence at time t = r+1 depend on the state probability distribution
of all the sequences (including itself) at times t = r, r − 1, ..., r − n+ 1.

x
(j)
r+1 =

s∑

k=1

n∑

h=1

λ
(h)
jk P

(jk)
h x

(k)
r−h+1, j = 1, 2, ..., s, r = n− 1, n, ... (19)
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with initial distribution x
(k)
0 , x

(k)
1 , ..., x

(k)
n−1(k = 1, 2, ..., s). Here

λ
(h)
jk ≥ 0, 1 ≤ j, k ≤ s, 1 ≤ h ≤ n and

s∑

k=1

n∑

h=1

λ
(h)
jk = 1, j = 1, 2, 3, ..., s. (20)

Now we will see the simpler representation of the model which will help us understand the
result of fitHighOrderMultivarMC method.

Let X
(j)
r = ((x

(j)
r )T , (x

(j)
r−1)

T , ..., (x
(j)
r−n+1)

T )T for j = 1, 2, 3, ..., s. Then




X
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X
(2)
r+1

.

.

.

X
(s)
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=




B11 B12 . . B1s

B21 B22 . . B2s

. . . . .

. . . . .

. . . . .
Bs1 Bs2 . . Bss







X
(1)
r

X
(2)
r

.

.

.

X
(s)
r




where

Bii =




λ
(1)
ii P

(ii)
1 λ

(2)
ii P

(ii)
2 . . λ

(n)
ii P

(ii)
n

I 0 . . 0
0 I . . 0
. . . . .
. . . . .
0 . . I 0




mn∗mn

and

Bij =




λ
(1)
ij P

(ij)
1 λ

(2)
ij P

(ij)
2 . . λ

(n)
ij P

(ij)
n

0 0 . . 0
0 0 . . 0
. . . . .
. . . . .
0 . . 0 0




mn∗mn

when i 6= j.

Represenation of parameters in the code

P
(ij)
h is represented as Ph(i, j) and λ

(h)
ij as Lambdah(i,j). For example: P

(13)
2 as P2(1, 3) and

λ
(3)
45 as Lambda3(4,5).

Definition of HOMMC class

Class "hommc" [package "markovchain"]

Slots:

Name: order states P Lambda byrow name

Class: numeric character array numeric logical character
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Any element of hommc class is comprised by following slots:

1. states: a character vector, listing the states for which transition probabilities are defined.

2. byrow: a logical element, indicating whether transition probabilities are shown by row
or by column.

3. order: order of Multivariate Markov chain.

4. P: an array of all transition matrices.

5. Lambda: a vector to store the weightage of each transition matrix.

6. name: optional character element to name the HOMMC

How to create an object of class HOMMC

R> states <- c(✬a✬, ✬b✬)

R> P <- array(dim = c(2, 2, 4), dimnames = list(states, states))

R> P[ , , 1] <- matrix(c(1/3, 2/3, 1, 0), byrow = FALSE, nrow = 2, ncol = 2)

R> P[ , , 2] <- matrix(c(0, 1, 1, 0), byrow = FALSE, nrow = 2, ncol = 2)

R> P[ , , 3] <- matrix(c(2/3, 1/3, 0, 1), byrow = FALSE, nrow = 2, ncol = 2)

R> P[ , , 4] <- matrix(c(1/2, 1/2, 1/2, 1/2), byrow = FALSE, nrow = 2, ncol = 2)

R> Lambda <- c(.8, .2, .3, .7)

R> hob <- new("hommc", order = 1, Lambda = Lambda, P = P, states = states,

+ byrow = FALSE, name = "FOMMC")

R> hob

Order of multivariate markov chain = 1

states = a b

List of Lambda✬s and the corresponding transition matrix (by cols) :

Lambda1(1,1) : 0.8

P1(1,1) :

a b

a 0.3333333 1

b 0.6666667 0

Lambda1(1,2) : 0.2

P1(1,2) :

a b

a 0 1

b 1 0

Lambda1(2,1) : 0.3

P1(2,1) :

a b

a 0.6666667 0
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b 0.3333333 1

Lambda1(2,2) : 0.7

P1(2,2) :

a b

a 0.5 0.5

b 0.5 0.5

Fit HOMMC

fitHighOrderMultivarMC method is available to fit HOMMC. Below are the 3 parameters
of this method.

1. seqMat: a character matrix or a data frame, each column represents a categorical
sequence.

2. order: order of Multivariate Markov chain. Default is 2.

3. Norm: Norm to be used. Default is 2.

6. Applications

This section shows applications of DTMC in various fields.

6.1. Weather forecasting

Markov chains provide a simple model to predict the next day’s weather given the current
meteorological condition. The first application herewith shown is the ”Land of Oz example”
from J. G. Kemeny, J. L.Snell, and G. L. Thompson (1974), the second is the ”Alofi Island
Rainfall” from P. J. Avery and D. A. Henderson (1999).

Land of Oz

The Land of Oz is acknowledged not to have ideal weather conditions at all: the weather is
snowy or rainy very often and, once more, there are never two nice days in a row. Consider
three weather states: rainy, nice and snowy. Let the transition matrix be as in the following:

R> mcWP <- new("markovchain", states = c("rainy", "nice", "snowy"),

+ transitionMatrix = matrix(c(0.5, 0.25, 0.25,

+ 0.5, 0, 0.5,

+ 0.25,0.25,0.5), byrow = T, nrow = 3))

Given that today it is a nice day, the corresponding stochastic row vector is w0 = (0 , 1 , 0)
and the forecast after 1, 2 and 3 days are given by

R> W0 <- t(as.matrix(c(0, 1, 0)))

R> W1 <- W0 * mcWP; W1
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rainy nice snowy

[1,] 0.5 0 0.5

R> W2 <- W0 * (mcWP ^ 2); W2

rainy nice snowy

[1,] 0.375 0.25 0.375

R> W3 <- W0 * (mcWP ^ 3); W3

rainy nice snowy

[1,] 0.40625 0.1875 0.40625

As can be seen from w1, if in the Land of Oz today is a nice day, tomorrow it will rain or
snow with probability 1. One week later, the prediction can be computed as

R> W7 <- W0 * (mcWP ^ 7)

R> W7

rainy nice snowy

[1,] 0.4000244 0.1999512 0.4000244

The steady state of the chain can be computed by means of the steadyStates method.

R> q <- steadyStates(mcWP)

R> q

rainy nice snowy

[1,] 0.4 0.2 0.4

Note that, from the seventh day on, the predicted probabilities are substantially equal to the
steady state of the chain and they don’t depend from the starting point, as the following code
shows.

R> R0 <- t(as.matrix(c(1, 0, 0)))

R> R7 <- R0 * (mcWP ^ 7); R7

rainy nice snowy

[1,] 0.4000244 0.2000122 0.3999634

R> S0 <- t(as.matrix(c(0, 0, 1)))

R> S7 <- S0 * (mcWP ^ 7); S7

rainy nice snowy

[1,] 0.3999634 0.2000122 0.4000244
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Alofi Island Rainfall

Alofi Island daily rainfall data were recorded from January 1st, 1987 until December 31st,
1989 and classified into three states: ”0” (no rain), ”1-5” (from non zero until 5 mm) and ”6+”
(more than 5mm). The corresponding dataset is provided within the markovchain package.

R> data("rain", package = "markovchain")

R> table(rain$rain)

0 1-5 6+

548 295 253

The underlying transition matrix is estimated as follows.

R> mcAlofi <- markovchainFit(data = rain$rain, name = "Alofi MC")$estimate

R> mcAlofi

Alofi MC

A 3 - dimensional discrete Markov Chain defined by the following states:

0, 1-5, 6+

The transition matrix (by rows) is defined as follows:

0 1-5 6+

0 0.6605839 0.2299270 0.1094891

1-5 0.4625850 0.3061224 0.2312925

6+ 0.1976285 0.3122530 0.4901186

The long term daily rainfall distribution is obtained by means of the steadyStates method.

R> steadyStates(mcAlofi)

0 1-5 6+

[1,] 0.5008871 0.2693656 0.2297473

6.2. Finance and Economics

Other relevant applications of DTMC can be found in Finance and Economics.

Finance

Credit ratings transitions have been successfully modelled with discrete time Markov chains.
Some rating agencies publish transition matrices that show the empirical transition proba-
bilities across credit ratings. The example that follows comes from CreditMetrics R package
(Wittmann 2007), carrying Standard & Poor’s published data.

R> rc <- c("AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D")

R> creditMatrix <- matrix(c(90.81, 8.33, 0.68, 0.06, 0.08, 0.02, 0.01, 0.01,
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+ 0.70, 90.65, 7.79, 0.64, 0.06, 0.13, 0.02, 0.01,

+ 0.09, 2.27, 91.05, 5.52, 0.74, 0.26, 0.01, 0.06,

+ 0.02, 0.33, 5.95, 85.93, 5.30, 1.17, 1.12, 0.18,

+ 0.03, 0.14, 0.67, 7.73, 80.53, 8.84, 1.00, 1.06,

+ 0.01, 0.11, 0.24, 0.43, 6.48, 83.46, 4.07, 5.20,

+ 0.21, 0, 0.22, 1.30, 2.38, 11.24, 64.86, 19.79,

+ 0, 0, 0, 0, 0, 0, 0, 100

+ )/100, 8, 8, dimnames = list(rc, rc), byrow = TRUE)

It is easy to convert such matrices into markovchain objects and to perform some analyses

R> creditMc <- new("markovchain", transitionMatrix = creditMatrix,

+ name = "S&P Matrix")

R> absorbingStates(creditMc)

[1] "D"

Economics

For a recent application of markovchain in Economic, see Jacob (2014).

A dynamic system generates two kinds of economic effects (Bard 2000):

1. those incurred when the system is in a specified state, and

2. those incurred when the system makes a transition from one state to another.

Let the monetary amount of being in a particular state be represented as a m-dimensional
column vector cS, while let the monetary amount of a transition be embodied in a CR matrix
in which each component specifies the monetary amount of going from state i to state j in a
single step. Henceforth, Equation 21 represents the monetary of being in state i.

ci = cSi +

m∑

j=1

CR
ijpij . (21)

Let c̄ = [ci] and let ei be the vector valued 1 in the initial state and 0 in all other, then, if fn is
the random variable representing the economic return associated with the stochastic process
at time n, Equation 22 holds:

E [fn (Xn) |X0 = i] = eiP
nc̄. (22)

The following example assumes that a telephone company models the transition probabilities
between customer/non-customer status by matrix P and the cost associated to states by
matrix M .

R> statesNames <- c("customer", "non customer")

R> P <- zeros(2); P[1, 1] <- .9; P[1, 2] <- .1; P[2, 2] <- .95; P[2, 1] <- .05;

R> rownames(P) <- statesNames; colnames(P) <- statesNames

R> mcP <- new("markovchain", transitionMatrix = P, name = "Telephone company")

R> M <- zeros(2); M[1, 1] <- -20; M[1, 2] <- -30; M[2, 1] <- -40; M[2, 2] <- 0



58 The markovchain package

If the average revenue for existing customer is +100, the cost per state is computed as follows.

R> c1 <- 100 + conditionalDistribution(mcP, state = "customer") %*% M[1,]

R> c2 <- 0 + conditionalDistribution(mcP, state = "non customer") %*% M[2,]

For an existing customer, the expected gain (loss) at the fifth year is given by the following
code.

R> as.numeric((c(1, 0)* mcP ^ 5) %*% (as.vector(c(c1, c2))))

[1] 48.96009

6.3. Marketing

We tried to replicate the example found in Ching et al. (2008) for an application of HOMMC.
A soft-drink company in Hong Kong is facing an in-house problem of production planning
and inventory control. A pressing issue is the storage space of its central warehouse, which
often finds itself in the state of overflow or near capacity. The company is thus in urgent
needs to study the interplay between the storage space requirement and the overall growing
sales demand. The product can be classified into six possible states (1, 2, 3, 4, 5, 6) according
to their sales volumes. All products are labeled as 1 = no sales volume, 2 = very slow-moving
(very low sales volume), 3 = slow-moving, 4 = standard, 5 = fast-moving or 6 = very fast-
moving (very high sales volume). Such labels are useful from both marketing and production
planning points of view. The data is cointaind in sales object.

R> data(sales)

R> head(sales)

A B C D E

[1,] "6" "1" "6" "6" "6"

[2,] "6" "6" "6" "2" "2"

[3,] "6" "6" "6" "2" "2"

[4,] "6" "1" "6" "2" "2"

[5,] "2" "6" "6" "2" "2"

[6,] "6" "1" "6" "3" "3"

The company would also like to predict sales demand for an important customer in order to
minimize its inventory build-up. More importantly, the company can understand the sales
pattern of this customer and then develop a marketing strategy to deal with this customer.
Customer’s sales demand sequences of five important products of the company for a year. We
expect sales demand sequences generated by the same customer to be correlated to each other.
Therefore by exploring these relationships, one can obtain a better higher-order multivariate
Markov model for such demand sequences, hence obtain better prediction rules.

In Ching et al. (2008) application, they choose the order arbitrarily to be eight, i.e., n = 8.

We first estimate all the transition probability matrices P
(ij)
h and we also have the estimates

of the stationary probability distributions of the five products:.
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x̂
(1) =

(
0.0818 0.4052 0.0483 0.0335 0.0037 0.4275

)T

x̂
(2) =

(
0.3680 0.1970 0.0335 0.0000 0.0037 0.3978

)T

x̂
(3) =

(
0.1450 0.2045 0.0186 0.0000 0.0037 0.6283

)T

x̂
(4) =

(
0.0000 0.3569 0.1338 0.1896 0.0632 0.2565

)T

x̂
(5) =

(
0.0000 0.3569 0.1227 0.2268 0.0520 0.2416

)T

By solving the corresponding linear programming problems, we obtain the following higher-
order multivariate Markov chain model:

x
(1)
r+1 = P

(12)
1 x

(2)
r

x
(2)
r+1 = 0.6364P

(22)
1 x

(2)
r + 0.3636P

(22)
3 x

(2)
r

x
(3)
r+1 = P

(35)
1 x

(5)
r

x
(4)
r+1 = 0.2994P

(42)
8 x

(2)
r + 0.4324P

(45)
1 x

(5)
r + 0.2681P

(45)
2 x

(5)
r

x
(5)
r+1 = 0.2718P

(52)
8 x

(2)
r + 0.6738P

(54)
1 x

(4)
r + 0.0544P

(55)
2 x

(5)
r

According to the constructed 8th order multivariate Markov model, Products A and B are
closely related. In particular, the sales demand of Product A depends strongly on Product B.
The main reason is that the chemical nature of Products A and B is the same, but they have
different packaging for marketing purposes. Moreover, Products B, C, D and E are closely
related. Similarly, products C and E have the same product flavor, but different packaging. In
this model, it is interesting to note that both Product D and E quite depend on Product B at
order of 8, this relationship is hardly to be obtained in conventional Markov model owing to
huge amount of parameters. The results show that higher-order multivariate Markov model
is quite significant to analyze the relationship of sales demand.

R> # fit 8th order multivariate markov chain

R> object <- fitHighOrderMultivarMC(sales, order = 8, Norm = 2)

We choose to show only results shown in the paper. We see that λ values are quite close, but
not equal, to those shown in the original paper.

Order of multivariate markov chain = 8

states = 1 2 3 4 5 6

List of Lambda✬s and the corresponding transition matrix (by cols) :

Lambda1(1,2) : 0.9999989

P1(1,2) :

1 2 3 4 5 6

1 0.06060606 0.1509434 0.0000000 0.1666667 0 0.07547170
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2 0.44444444 0.4716981 0.4444444 0.1666667 1 0.33018868

3 0.01010101 0.1320755 0.2222222 0.1666667 0 0.02830189

4 0.01010101 0.0754717 0.2222222 0.1666667 0 0.01886792

5 0.01010101 0.0000000 0.0000000 0.1666667 0 0.00000000

6 0.46464646 0.1698113 0.1111111 0.1666667 0 0.54716981

Lambda1(2,2) : 0.4812247

P1(2,2) :

1 2 3 4 5 6

1 0.40404040 0.20754717 0.0000000 0.1666667 1 0.433962264

2 0.11111111 0.47169811 0.3333333 0.1666667 0 0.132075472

3 0.02020202 0.05660377 0.3333333 0.1666667 0 0.009433962

4 0.00000000 0.00000000 0.0000000 0.1666667 0 0.000000000

5 0.00000000 0.00000000 0.1111111 0.1666667 0 0.000000000

6 0.46464646 0.26415094 0.2222222 0.1666667 0 0.424528302

Lambda3(2,2) : 0.3870364

P3(2,2) :

1 2 3 4 5 6

1 0.40404040 0.16981132 0.3333333 0.1666667 0 0.44230769

2 0.18181818 0.33962264 0.2222222 0.1666667 0 0.14423077

3 0.03030303 0.05660377 0.0000000 0.1666667 0 0.02884615

4 0.00000000 0.00000000 0.0000000 0.1666667 0 0.00000000

5 0.00000000 0.00000000 0.1111111 0.1666667 0 0.00000000

6 0.38383838 0.43396226 0.3333333 0.1666667 1 0.38461538

Lambda1(3,5) : 0.676394

P1(3,5) :

1 2 3 4 5 6

1 0.1666667 0.09473684 0.1515152 0.1639344 0.07142857 0.21538462

2 0.1666667 0.18947368 0.2727273 0.2295082 0.14285714 0.18461538

3 0.1666667 0.04210526 0.0000000 0.0000000 0.00000000 0.01538462

4 0.1666667 0.00000000 0.0000000 0.0000000 0.00000000 0.00000000

5 0.1666667 0.01052632 0.0000000 0.0000000 0.00000000 0.00000000

6 0.1666667 0.66315789 0.5757576 0.6065574 0.78571429 0.58461538

Lambda8(4,2) : 0.2729107

P8(4,2) :

1 2 3 4 5 6

1 0.00000000 0.00000000 0.0000000 0.1666667 0 0.00000000

2 0.34343434 0.18867925 0.6666667 0.1666667 0 0.42424242

3 0.10101010 0.16981132 0.0000000 0.1666667 1 0.14141414

4 0.20202020 0.22641509 0.1111111 0.1666667 0 0.17171717

5 0.08080808 0.09433962 0.1111111 0.1666667 0 0.03030303

6 0.27272727 0.32075472 0.1111111 0.1666667 0 0.23232323

Lambda1(4,5) : 0.2293906
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P1(4,5) :

1 2 3 4 5 6

1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

2 0.1666667 0.47368421 0.21212121 0.03278689 0.00000000 0.64615385

3 0.1666667 0.10526316 0.21212121 0.19672131 0.07142857 0.09230769

4 0.1666667 0.00000000 0.24242424 0.54098361 0.57142857 0.03076923

5 0.1666667 0.01052632 0.03030303 0.18032787 0.28571429 0.00000000

6 0.1666667 0.41052632 0.30303030 0.04918033 0.07142857 0.23076923

Lambda2(4,5) : 0.2989146

P2(4,5) :

1 2 3 4 5 6

1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

2 0.1666667 0.55319149 0.36363636 0.06557377 0.00000000 0.41538462

3 0.1666667 0.13829787 0.09090909 0.21311475 0.28571429 0.04615385

4 0.1666667 0.05319149 0.24242424 0.40983607 0.64285714 0.06153846

5 0.1666667 0.02127660 0.06060606 0.16393443 0.07142857 0.03076923

6 0.1666667 0.23404255 0.24242424 0.14754098 0.00000000 0.44615385

Lambda8(5,2) : 0.2268906

P8(5,2) :

1 2 3 4 5 6

1 0.00000000 0.00000000 0.0000000 0.1666667 0 0.00000000

2 0.35353535 0.20754717 0.6666667 0.1666667 1 0.39393939

3 0.10101010 0.15094340 0.0000000 0.1666667 0 0.13131313

4 0.22222222 0.30188679 0.2222222 0.1666667 0 0.20202020

5 0.09090909 0.03773585 0.0000000 0.1666667 0 0.03030303

6 0.23232323 0.30188679 0.1111111 0.1666667 0 0.24242424

Lambda1(5,4) : 0.2268058

P1(5,4) :

1 2 3 4 5 6

1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

2 0.1666667 0.48421053 0.16666667 0.01960784 0.05882353 0.60869565

3 0.1666667 0.10526316 0.16666667 0.15686275 0.05882353 0.11594203

4 0.1666667 0.00000000 0.44444444 0.62745098 0.64705882 0.02898551

5 0.1666667 0.01052632 0.02777778 0.15686275 0.23529412 0.00000000

6 0.1666667 0.40000000 0.19444444 0.03921569 0.00000000 0.24637681

Lambda2(5,5) : 0.5398433

P2(5,5) :

1 2 3 4 5 6

1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

2 0.1666667 0.52127660 0.42424242 0.04918033 0.07142857 0.43076923

3 0.1666667 0.12765957 0.03030303 0.19672131 0.21428571 0.07692308

4 0.1666667 0.05319149 0.33333333 0.54098361 0.50000000 0.07692308

5 0.1666667 0.02127660 0.03030303 0.11475410 0.21428571 0.01538462
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6 0.1666667 0.27659574 0.18181818 0.09836066 0.00000000 0.40000000

6.4. Actuarial science

Markov chains are widely applied in the field of actuarial science. Two classical applications
are policyholders’ distribution across Bonus Malus classes in Motor Third Party Liability
(MTPL) insurance (Section 6.4.1) and health insurance pricing and reserving (Section 6.4.2).

MPTL Bonus Malus

Bonus Malus (BM) contracts grant the policyholder a discount (enworsen) as a function of
the number of claims in the experience period. The discount (enworsen) is applied on a pre-
mium that already allows for known (a priori) policyholder characteristics (Denuit, Maréchal,
Pitrebois, and Walhin 2007) and it usually depends on vehicle, territory, the demographic
profile of the policyholder, and policy coverages deep (deductible and policy limits).
Since the proposed BM level depends on the claim on the previous period, it can be modelled
by a discrete Markov chain. A very simplified example follows. Assume a BM scale from 1
to 5, where 4 is the starting level. The evolution rules are shown in Equation 23:

bmt+1 = max (1, bmt − 1) ∗
(
Ñ = 0

)
+min

(
5, bmt + 2 ∗ Ñ

)
∗
(
Ñ ≥ 1

)
. (23)

Tthe number of claim Ñ is a random variable that is assumed to be Poisson distributed.

R> getBonusMalusMarkovChain <- function(lambda)

+ {

+ bmMatr <- zeros(5)

+ bmMatr[1, 1] <- dpois(x = 0, lambda)

+ bmMatr[1, 3] <- dpois(x = 1, lambda)

+ bmMatr[1, 5] <- 1 - ppois(q = 1, lambda)

+

+ bmMatr[2, 1] <- dpois(x = 0, lambda)

+ bmMatr[2, 4] <- dpois(x = 1, lambda)

+ bmMatr[2, 5] <- 1 - ppois(q = 1, lambda)

+

+ bmMatr[3, 2] <- dpois(x = 0, lambda)

+ bmMatr[3, 5] <- 1 - dpois(x=0, lambda)

+

+ bmMatr[4, 3] <- dpois(x = 0, lambda)

+ bmMatr[4, 5] <- 1 - dpois(x = 0, lambda)

+

+ bmMatr[5, 4] <- dpois(x = 0, lambda)

+ bmMatr[5, 5] <- 1 - dpois(x = 0, lambda)

+ stateNames <- as.character(1:5)

+ out <- new("markovchain", transitionMatrix = bmMatr,

+ states = stateNames, name = "BM Matrix")

+ return(out)
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+ }

R>

Assuming that the a-priori claim frequency per car-year is 0.05 in the class (being the class
the group of policyholders that share the same common characteristics), the underlying BM
transition matrix and its underlying steady state are as follows.

R> bmMc <- getBonusMalusMarkovChain(0.05)

R> as.numeric(steadyStates(bmMc))

[1] 0.895836079 0.045930498 0.048285405 0.005969247 0.003978772

If the underlying BM coefficients of the class are 0.5, 0.7, 0.9, 1.0, 1.25, this means that the
average BM coefficient applied on the long run to the class is given by

R> sum(as.numeric(steadyStates(bmMc)) * c(0.5, 0.7, 0.9, 1, 1.25))

[1] 0.534469

This means that the average premium paid by policyholders in the portfolio almost halves in
the long run.

Health insurance example

Actuaries quantify the risk inherent in insurance contracts evaluating the premium of insur-
ance contract to be sold (therefore covering future risk) and evaluating the actuarial reserves
of existing portfolios (the liabilities in terms of benefits or claims payments due to policy-
holder arising from previously sold contracts). Key quantities of actuarial interest are: the
expected present value of future benefits, PV FB, the (periodic) benefit premium, P , and
the present value of future premium PV FP . A level benefit premium could be set equating
at the beginning of the contract PV FB = PV FP . After the beginning of the contract the
benefit reserve is the difference between PV FB and PV FP . The example comes from Desh-
mukh (2012). The interest rate is 5%, benefits are payable upon death (1000) and disability
(500). Premiums are payable at the beginning of period only if the policyholder is active.
The contract term is three years.

R> mcHI <- new("markovchain", states = c("active", "disable", "withdrawn",

+ "death"),

+ transitionMatrix = matrix(c(0.5, .25, .15, .1,

+ 0.4, 0.4, 0.0, 0.2,

+ 0, 0, 1, 0,

+ 0, 0, 0, 1), byrow = TRUE, nrow = 4))

R> benefitVector <- as.matrix(c(0, 0, 500, 1000))

The policyholders is active at T0. Therefore the expected states at T1, . . . T3 are calculated in
the following.
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R> T0 <- t(as.matrix(c(1, 0, 0, 0)))

R> T1 <- T0 * mcHI

R> T2 <- T1 * mcHI

R> T3 <- T2 * mcHI

The present value of future benefit at T0 is given by

R> PVFB <- T0 %*% benefitVector * 1.05 ^ -0 +

+ T1 %*% benefitVector * 1.05 ^ -1+

+ T2 %*% benefitVector * 1.05 ^ -2 + T3 %*% benefitVector * 1.05 ^ -3

The yearly premium payable whether the insured is alive is as follows.

R> P <- PVFB / (T0[1] * 1.05 ^- 0 + T1[1] * 1.05 ^ -1 + T2[1] * 1.05 ^ -2)

The reserve at the beginning of the second year, in the case of the insured being alive, is as
follows.

R> PVFB <- T2 %*% benefitVector * 1.05 ^ -1 + T3 %*% benefitVector * 1.05 ^ -2

R> PVFP <- P*(T1[1] * 1.05 ^ -0 + T2[1] * 1.05 ^ -1)

R> V <- PVFB - PVFP

R> V

[,1]

[1,] 300.2528

An applied example can be performed using the data from De Angelis, Paolo and Di Falco,
L. (2016) that has been saved in the exdata folder.

R> ltcDemoPath<-system.file("extdata", "ltdItaData.txt", package = "markovchain")

R> ltcDemo<-read.table(file = ltcDemoPath, header=TRUE, sep=";",dec = ".")

R> head(ltcDemo)

age pAD pID pAI pAA

1 20 0.0004616002 0.01083364 0.0001762467 0.9993622

2 21 0.0004824888 0.01079719 0.0001710577 0.9993465

3 22 0.0004949938 0.01177076 0.0001592333 0.9993458

4 23 0.0005042935 0.01159394 0.0001605731 0.9993351

5 24 0.0005074193 0.01260574 0.0001606504 0.9993319

6 25 0.0005154267 0.01526364 0.0001643603 0.9993202

6.5. Sociology

Markov chains have been actively used to model progressions and regressions between social
classes. The first study was performed by Glass and Hall (1954), while a more recent ap-
plication can be found in Jo Blanden and Machin (2005). The table that follows shows the
income quartile of the father when the son was 16 (in 1984) and the income quartile of the
son when aged 30 (in 2000) for the 1970 cohort.
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1970 mobility

0.29

0.26
0.21

0.42

0.220.38

0.11

0.28

0.25

0.22

0.26

0.28

0.24

0.17

0.250.16

●

●●

●

2nd

3rdBottom

Top

Figure 5: 1970 UK cohort mobility data.

R> data("blanden")

R> mobilityMc <- as(blanden, "markovchain")

R> mobilityMc

Unnamed Markov chain

A 4 - dimensional discrete Markov Chain defined by the following states:

Bottom, 2nd, 3rd, Top

The transition matrix (by rows) is defined as follows:

2nd 3rd Bottom Top

Bottom 0.2900000 0.2200000 0.3800000 0.1100000

2nd 0.2772277 0.2574257 0.2475248 0.2178218

3rd 0.2626263 0.2828283 0.2121212 0.2424242

Top 0.1700000 0.2500000 0.1600000 0.4200000

The underlying transition graph is plotted in Figure 5.

The steady state distribution is computed as follows. Since transition across quartiles are
shown, the probability function is evenly 0.25.
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R> round(steadyStates(mobilityMc), 2)

Bottom 2nd 3rd Top

[1,] 0.25 0.25 0.25 0.25

6.6. Genetics and Medicine

This section contains two examples: the first shows the use of Markov chain models in genetics,
the second shows an application of Markov chains in modelling diseases’ dynamics.

Genetics

P. J. Avery and D. A. Henderson (1999) discusses the use of Markov chains in model Preprogu-
cacon gene protein bases sequence. The preproglucacon dataset in markovchain contains
the dataset shown in the package.

R> data("preproglucacon", package = "markovchain")

It is possible to model the transition probabilities between bases as shown in the following
code.

R> mcProtein <- markovchainFit(preproglucacon$preproglucacon,

+ name = "Preproglucacon MC")$estimate

R> mcProtein

Preproglucacon MC

A 4 - dimensional discrete Markov Chain defined by the following states:

A, C, G, T

The transition matrix (by rows) is defined as follows:

A C G T

A 0.3585271 0.1434109 0.16666667 0.3313953

C 0.3840304 0.1558935 0.02281369 0.4372624

G 0.3053097 0.1991150 0.15044248 0.3451327

T 0.2844523 0.1819788 0.17667845 0.3568905

Medicine

Discrete-time Markov chains are also employed to study the progression of chronic diseases.
The following example is taken from B. A. Craig and A. A. Sendi (2002). Starting from six
month follow-up data, the maximum likelihood estimation of the monthly transition matrix is
obtained. This transition matrix aims to describe the monthly progression of CD4-cell counts
of HIV infected subjects.

R> craigSendiMatr <- matrix(c(682, 33, 25,

+ 154, 64, 47,

+ 19, 19, 43), byrow = T, nrow = 3)
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R> hivStates <- c("0-49", "50-74", "75-UP")

R> rownames(craigSendiMatr) <- hivStates

R> colnames(craigSendiMatr) <- hivStates

R> craigSendiTable <- as.table(craigSendiMatr)

R> mcM6 <- as(craigSendiTable, "markovchain")

R> mcM6@name <- "Zero-Six month CD4 cells transition"

R> mcM6

Zero-Six month CD4 cells transition

A 3 - dimensional discrete Markov Chain defined by the following states:

0-49, 50-74, 75-UP

The transition matrix (by rows) is defined as follows:

0-49 50-74 75-UP

0-49 0.9216216 0.04459459 0.03378378

50-74 0.5811321 0.24150943 0.17735849

75-UP 0.2345679 0.23456790 0.53086420

As shown in the paper, the second passage consists in the decomposition of M6 = V ·D ·V −1

in order to obtain M1 as M1 = V ·D1/6 · V −1 .

R> eig <- eigen(mcM6@transitionMatrix)

R> D <- diag(eig$values)

R> V <- eig$vectors

R> V %*% D %*% solve(V)

[,1] [,2] [,3]

[1,] 0.9216216 0.04459459 0.03378378

[2,] 0.5811321 0.24150943 0.17735849

[3,] 0.2345679 0.23456790 0.53086420

R> d <- D ^ (1/6)

R> M <- V %*% d %*% solve(V)

R> mcM1 <- new("markovchain", transitionMatrix = M, states = hivStates)

7. Discussion, issues and future plans

The markovchain package has been designed in order to provide easily handling of DTMC
and communication with alternative packages.

Some numerical issues have been found when working with matrix algebra using R internal
linear algebra kernel (the same calculations performed with MATLAB gave a more accurate
result). Some temporary workarounds have been implemented. For example, the condition
for row/column sums to be equal to one is valid up to fifth decimal. Similarly, when extracting
the eigenvectors only the real part is taken.
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Such limitations are expected to be overcome in future releases. Similarly, future versions of
the package are expected to improve the code in terms of numerical accuracy and rapidity.
An intitial rewriting of internal function in C++ by means of Rcpp package (Eddelbuettel
2013) has been started.
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