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Abstract

matrixpls calculates composite variable models using partial least squares (PLS) algo-
rithm and related methods. In contrast to most other PLS software which implement the
raw data version of the algorithm, matrixpls works with data covariance matrices. The
algorithms are designed to be computationally efficient, modular in programming, and
well documented. matrixpls integrates with simsem to enable Monte Carlo simulations
with as little custom programming as possible.

Keywords: partial least squares, generalized structured component analysis, composite-based
modeling, R.

1. Introduction

matrixpls calculates models where sets of indicator variables are combined as weighted com-
posites. These composites are then used to estimate a statistical model describing the rela-
tionships between the composites and composites and indicators. While a number of such
methods exists, the partial least squares (PLS) technique is perhaps the most widely used.

PLS has recently gained popularity in several disciplines as an alternative approach to struc-
tural equation modeling (SEM) or as an alternative to SEM itself (Hair, Sarstedt, Pieper,
et al. 2012; Hair, Sarstedt, Ringle, et al. 2012; Ringle, Sarstedt, and Straub 2012; Rönkkö
and Evermann 2013) The route through which PLS emerged into the mainstream in these
disciplines was rather unorthodox. The PLS method was first published in the 1966 and
slowly developed through the 70’s and early 80’s by Herman Wold (1966; 1974; 1980; 1982;
1985). Originally developed as an iterative least squares method for calculating principal
components, canonical correlations, and other similar statistic, the method was later adopted
as an approximate estimation algorithm for structural equation models with latent variables.
However, Dijkstra (1983) soon proved that the PLS method was not consistent when used for
this purpose and the PLS method never gained much attention from other econometricians
or other researchers specializing in statistical analysis. Consequently, the PLS method is cur-
rently almost completely absent from the mainstream journals on research methods (Rönkkö
and Evermann 2013).

The PLS method re-emerged, however, in the marketing and information systems disciplines
(Hair, Ringle, and Sarstedt 2012), in which the popularity of the method can be attributed
to a number of introductory articles that present PLS as an SEM method that has less
stringent assumptions concerning the data and that avoids many of the perceived difficulties
of SEM. The articles published by these applied scholars, and particularly a paper by Fornell
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and Bookstein (1982) and a book chapter by Chin (1998), formed the core of the modern
understanding of the PLS method. These publications were followed by a number of articles
that provided guidelines for application of PLS in disciplines such as strategic management
(Hulland 1999), operations management (Peng and Lai 2012), marketing (Hair and Ringle
2011), and information systems (Gefen, Rigdon, and Straub 2011).

Today PLS is used extensively in information systems and marketing (Hair, Sarstedt, Ringle,
et al. 2012; Henseler, Ringle, and Sinkovics 2009; Ringle, Sarstedt, and Straub 2012) and is
increasingly used in management and organizational research (Hair, Sarstedt, Pieper, et al.
2012; Rönkkö and Evermann 2013), and has also been introduced into psychology (Willaby
et al. 2015). However, the popularity of the method has also brought with it an increasing
number of arcticles critical of the method (Rönkkö and Evermann 2013; Evermann and Tate
2013; Rönkkö 2014; Rönkkö, McIntosh, and Antonakis 2015; Rönkkö and Ylitalo 2010; An-
tonakis et al. 2010; Goodhue, Lewis, and Thompson 2012; Goodhue, Thompson, and Lewis
2013). These critics claim that many of the beliefs about the capabilities of the PLS method
as an estimator of latent variable structural equations are unsubstantiated and not true, that
the method capitalizes on chance, and that it does not have valid statistical tests. Some even
go as far as declaring that the PLS method should never be used (Antonakis et al. 2010).

PLS has been challenged by algorithms that are argued to be superior by their developers.
Hwang and Takane (2014; 2004) proposed generalized structured component analysis (GSCA)
arguing that it is superior over PLS because it has an explicit optimization criterion, which
the PLS algorithm lacks. Dijkstra (2011; Dijkstra and Henseler 2015b; Dijkstra and Henseler
2015a) proposed that PLS can be made consistent by applying disattenuation, referring to
this estimator as PLSc. Huang (2013; Bentler and Huang 2014) proposed two additional
estimators that parameterize LISREL estimators based on Dijkstra’s PLSc estimator. These
estimators, referred to as PLSe1 an PLSe2 are argued to be more efficient than the consistent
PLSc estimator.

The matrixpls package implements a collection of PLS techniques as well as the more recent
GSCA and PLSc techniques and older methods based on analysis with composite variables,
such as regression with unit weighted composites or factor scores. The package provides a
unified framework that enables the comparison and analysis of these algorithms. In contrast
to previous R packages for PLS, such as plspm (Sanchez, Trinchera, and Russolillo 2015)
and semPLS (Monecke and Leisch 2012) and all currently available commercial PLS software,
which work with raw data, matrixpls calculates the indicator weights and model estimates
from data covariance matrices. Working with covariance data allows for reanalyzing covari-
ance matrices that are sometimes published as appendices of articles, is computationally more
efficient, and lends itself more easily for formal analysis than implementations based on raw
data.

matrixpls has modular design that is easily expanded and contains more calculation options
than the two other PLS packages for R. To allow validation of the algorithms by end users
and to help porting existing analysis files from the two other R packages to matrixpls, the
package contains compatibility functions for both plspm and semPLS.

1.1. Overview of design principles and the package functionality

The desing principles and functionality of the package is best explained by first explaining
the main function matrixpls. The function performs two tasks. It first calculates a set of
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indicator weights to form composites based on data covariance matrix and then estimates a
statistical model with the indicators and composites using the weights. The main function
takes the following arguments:

matrixpls(S, model, W.model = NULL,

weightFun = weightFun.pls,

parameterEstim = parameterEstim.separate,

weightSign = NULL, ...,

validateInput = TRUE, standardize = TRUE)

The first five arguments of matrixpls are most relevant for understanding how the package
works. S, is the data covariance or correlation matrix. model defines the model which is
estimated in the second stage and W.model defines how the indicators are to be aggregated
as composites. If W.model is left undefined, it will be constructed based on model following
rules that are explained elsewhere in the documentation. weightFun and parameterEstim

are functions that implement the first and second task of the function respectively. All other
arguments are passed down to these two functions, which in turn can pass arguments to other
functions that they call.

Many of the commonly used arguments of matrixpls function are functions themselves. For
example, executing a PLS analysis with Mode B outer estimation for all indicator blocks and
centroid inner estimation could be specified as follows:

matrixpls(S, model,

outerEstim = outerEstim.modeB,

innerEstim = innerEstim.centroid)

The arguments outerEstim and innerEstim are not defined by the matrixpls function, but
are passed down to weightFun.pls which is used as the default weightFun. outerEstim.modeB
and innerEstim.centroid are themselves functions provided by the matrixpls package, which
perform the actual inner and outer estimation stages of the PLS algorithm. Essentially, all
parts of the estimation algorithm can be provided as arguments for the main function. This
allows for adjusting the inner workings of the algorithm in a way that is currently not possible
with any other PLS software.

It is also possible to define custom functions. For example, we could define a new Mode B
outer estimator that only produces positive weights by creating a custom function:

myModeB <- function(...){

abs(outerEstim.ModeB(...))

}

matrixpls(S, model,

outerEstim = myModeB,

innerEstim = innerEstim.centroid)

Extending the package with more functions is explained in more detail in the end of the paper.
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1.2. Model matrices

Model can be specified in the lavaan format (Rosseel 2012) or the native matrixpls format.
The native model format is a list of three binary matrices, inner, reflective, and formative

specifying the free parameters of a model: inner (l x l) specifies the regressions between
composites, reflective (k x l) specifies the regressions of observed data on composites, and
formative (l x k) specifies the regressions of composites on the observed data. Here k is
the number of observed variables and l is the number of composites.

If the model is specified in lavaan format, the native format model is derived from this
model by assigning all regressions between latent variables to inner, all factor loadings to
reflective, and all regressions of latent variables on observed variables to formative. Re-
gressions between observed variables and all free covariances are ignored. All parameters that
are specified in the model will be treated as free parameters.

The original papers about Partial Least Squares, as well as many of the current PLS imple-
mentations, impose restrictions on the matrices inner, reflective, and formative: inner

must be a lower triangular matrix, reflective must have exactly one non-zero value on
each row and must have at least one non-zero value on each column, and formative must
only contain zeros. Some PLS implementations allow formative to contain non-zero values,
but impose a restriction that the sum of reflective and t(formative) must satisfy the
original restrictions of reflective. The only restrictions that matrixpls imposes on inner,
reflective, and formative is that these must be binary matrices and that the diagonal of
inner must be zeros.

The argument W.model is a (l x k) matrix that indicates how the indicators are combined to
form the composites. The original papers about Partial Least Squares as well as all current
PLS implementations define this as t(reflective) | formative, which means that the
weight patter must match the model specified in reflective and formative. Matrixpls
does not require that W.model needs to match reflective and formative, but accepts any
numeric matrix. If this argument is not specified, all elements of W.model that correspond to
non-zero elements in the reflective or formative formative matrices receive the value 1.

1.3. Performance

This design principle and the use of covariance matrices instead of raw data make matrixpls
substantially more computationally efficient than the other two R packages that implement
PLS path modeling algorithms. Table 1 and 2 benchmark the performance of matrixpls
1.0.0 against plspm 0.4.7 and semPLS 1.0.10 using the satisfaction example distributed
with plspm on R version 3.3.0 running on Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz.
Parallel bootstrapping results are presented only for matrixpls because the two other packages
do not support parallel computing.

Table 1: Timings for plspm, semPLS, and matrixpls for 100 replications

Time elapsed (seconds)

plspm 2.82
semPLS 8.29
matrixpls 0.23
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Table 2: Timings for plspm, semPLS, and matrixpls for 1000 bootstrap replications

Time elapsed (seconds)

plspm 14.63
semPLS 51.25
matrixpls (single core) 2.56
matrixpls (multicore) 0.72

2. Estimation using covariance data

The following sections provide an overview of the package functionality through code exam-
ples.

2.1. Basic PLS estimation

In a typical PLS implementation, the indicator weights are calculated iteratively starting
from equal weights and then recalculating the weights for each composite in two steps, called
inner and outer estimation. In the inner estimation step, new composites are calculated as
weighted sums of “adjacent” composites, that is, composites that are directly related to the
focal composite by regression relationships. The three commonly used “schemes” for inner
estimation are centroid, path, and factor schemes. In practice these results often very similar
results and are thus not discussed in detail here, but detailed descriptions can be found in
the matrixpls reference manual. The inner estimation step is calculated based on composite
correlation matrix C, which is calculated as:

C = W ᵀSW (1)

where S is the (k × k) indicator covariance matrix, and W is the (l × k) weight matrix, and
k is the number of indicators and l is the number of observed variables.

In the outer estimation step, new indicator weights are calculated in one of two ways. In
Mode A estimation, the observed variables are regressed on the composites, whereas in Mode
B estimation, the composites are regressed on the observed variables. The new indicator
weights are then used to calculate new composites for the following round of inner estimation.
These two steps are repeated until the changes in the indicator weights become sufficiently
small to consider the model converged.

The correlations between the indicators and composites after inner estimation required for
outer estimation are calculated as

IC = SWE (2)

where E is a (l × l) inner weight matrix.

The matrixpls PLS weight algorithm implementation is summarized in Table 3
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Table 3: PLS weight algorithm

Inner estimation Inner estimation function is applied to the data
covariance matrix S, weight matrix W, and com-
posite variable model matrix inner. The func-
tion returns an inner weight matrix E.

Outer estimation Outer estimation function is applied to the
data covariance matrix S, weight matrix W, in-
ner weight matrix E, and weight model matrix
W.model. The function returns a weight matrix
W.

Convergence check Convergence check function is applied to the
weight matrix W before and after outer estima-
tion. This function returns a scalar that is com-
pared against the tolerance value. If the scalar is
smaller than the tolerance value, the algorithm
converges. Otherwise, a new iteration is started.

The PLS weight algorithm is implemented with the weightFun.pls function:

weightFun.pls(S, model, W.model, outerEstim = NULL,

innerEstim = innerEstim.path, ..., convCheck = convCheck.absolute,

variant = "lohmoller", tol = 1e-05, iter = 100, validateInput = TRUE)

The inner and outer estimation functions define the weight algorithm. The package includes
all well-known and a number of less known functions. The built-in outer estimation functions
are listed in Table 4 and Table 5 lists the inner estimators.

Table 4: Outer weight functions

outerEstim.modeA PLS Mode A weights. Returns weights that are
proportional to correlations between indicators
and composites

outerEstim.modeB PLS Mode B weights. Returns weights that are
proportional to coefficients from regression of
composites on indicators.

outerEstim.gsca GSCA outer weights. Described later in the pa-
per.

outerEstim can be either a single function or a list of functions with lenght equal to the
number of composites. If just one function is provided, the same function will be used for
all composites. The default is to use Mode A and Mode B based on the reflective and
formative parts of model following the tradition in the PLS literature. If at least one of the
indicators that belong to a composite is specified as being regressed on the composite in the
reflective matrix, then Mode A is used for that composite. Otherwise Mode B is used.
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Table 5: Inner weight functions

innerEstim.path Path weighting scheme. Returns inner weights
based on regressions and correlations of adjacent
composites. (default)

innerEstim.centroid Centroid weighting scheme. Returns signs of
correlations of adjacent composites as weights

innerEstim.factor Factor weighting scheme. Returns correlations
of adjacent compositesas weights

innerEstim.identity Returns identity matrix as inner weights. Each
composite is used as its own inner approxima-
tion

innerEstim.gsca GSCA inner weights. Described later in the pa-
per.

After the weights have been calculated, the parameter estimator function defined provided in
the parameterEstim argument is applied to the data covariance matrix S, the weight matrix
W, and model. The default estimation command, params.separate, processes the three model
matrices, inner, reflective, and formative, separately by default applying OLS regression
row by row. This follows the tradition in PLS analysis. Extensions to this technique are
discussed later in the paper when discussing consistent PLSc estimation.

Example: Customer satisfaction

The following code example demonstrates a PLS analysis by replicating the customer satis-
faction example from the plspm package:

library(plspm)

# Run the customer satisfaction example form plspm

# load dataset satisfaction

data(satisfaction)

# inner model matrix

IMAG = c(0,0,0,0,0,0)

EXPE = c(1,0,0,0,0,0)

QUAL = c(0,1,0,0,0,0)

VAL = c(0,1,1,0,0,0)

SAT = c(1,1,1,1,0,0)

LOY = c(1,0,0,0,1,0)

inner = rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)

colnames(inner) <- rownames(inner)

# Reflective model

reflective<- matrix(

c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1),

27,6, dimnames = list(colnames(satisfaction)[1:27],colnames(inner)))

# empty formative model

formative <- matrix(0, 6, 27, dimnames = list(colnames(inner),

colnames(satisfaction)[1:27]))

satisfaction.model <- list(inner = inner,

reflective = reflective,

formative = formative)

# Estimation using covariance matrix

satisfaction.out <- matrixpls(cov(satisfaction[,1:27]),

model = satisfaction.model)

print(satisfaction.out)

matrixpls parameter estimates

Est.

EXPE~IMAG 0.56

SAT~IMAG 0.19

LOY~IMAG 0.29

QUAL~EXPE 0.85

VAL~EXPE 0.12

SAT~EXPE 0.01

VAL~QUAL 0.66

SAT~QUAL 0.14

SAT~VAL 0.58

LOY~SAT 0.47

IMAG=~imag1 0.75

IMAG=~imag2 0.89

IMAG=~imag3 0.87

IMAG=~imag4 0.63

IMAG=~imag5 0.69

EXPE=~expe1 0.79

EXPE=~expe2 0.82

EXPE=~expe3 0.73

EXPE=~expe4 0.77

EXPE=~expe5 0.82

QUAL=~qual1 0.79

QUAL=~qual2 0.87

QUAL=~qual3 0.76

QUAL=~qual4 0.82

QUAL=~qual5 0.81

VAL=~val1 0.86

VAL=~val2 0.83

VAL=~val3 0.76

VAL=~val4 0.82



Mikko Rönkkö 9

SAT=~sat1 0.92

SAT=~sat2 0.91

SAT=~sat3 0.83

SAT=~sat4 0.82

LOY=~loy1 0.89

LOY=~loy2 0.72

LOY=~loy3 0.88

LOY=~loy4 0.71

matrixpls weights

imag1 imag2 imag3 imag4 imag5 expe1 expe2 expe3 expe4 expe5 qual1

IMAG 0.21 0.3 0.31 0.18 0.28 0.00 0.00 0.00 0.00 0.00 0.00

EXPE 0.00 0.0 0.00 0.00 0.00 0.24 0.28 0.22 0.26 0.27 0.00

QUAL 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24

VAL 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SAT 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LOY 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

qual2 qual3 qual4 qual5 val1 val2 val3 val4 sat1 sat2 sat3 sat4 loy1

IMAG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EXPE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

QUAL 0.27 0.23 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VAL 0.00 0.00 0.00 0.00 0.35 0.29 0.25 0.33 0.00 0.00 0.00 0.00 0.00

SAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.31 0.25 0.27 0.00

LOY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38

loy2 loy3 loy4

IMAG 0.00 0.00 0.00

EXPE 0.00 0.00 0.00

QUAL 0.00 0.00 0.00

VAL 0.00 0.00 0.00

SAT 0.00 0.00 0.00

LOY 0.25 0.37 0.22

Weight algorithm converged in 5 iterations.

Example: Political democracy

The following code example demonstrates a PLS analysis by replicating the political democ-
racy example from the lavaan package:

library(lavaan)

## The industrialization and Political Democracy example

## Bollen (1989), page 332. (Adopted from the lavaan package.)

model <- '
# latent variable definitions

ind60 =~ x1 + x2 + x3

dem60 =~ y1 + a*y2 + b*y3 + c*y4

dem65 =~ y5 + a*y6 + b*y7 + c*y8

# regressions

dem60 ~ ind60

dem65 ~ ind60 + dem60
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# residual correlations

y1 ~~ y5

y2 ~~ y4 + y6

y3 ~~ y7

y4 ~~ y8

y6 ~~ y8

'

political.out <- matrixpls(cov(PoliticalDemocracy),model)

print(political.out)

matrixpls parameter estimates

Est.

dem60~ind60 0.40

dem65~ind60 0.20

dem65~dem60 0.79

ind60=~x1 0.95

ind60=~x2 0.97

ind60=~x3 0.92

dem60=~y1 0.88

(part of the output omitted)

matrixpls weights

x1 x2 x3 y1 y2 y3 y4 y5 y6 y7 y8

ind60 0.38 0.37 0.31 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00

dem60 0.00 0.00 0.00 0.31 0.27 0.26 0.33 0.0 0.00 0.00 0.00

dem65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3 0.28 0.29 0.29

Weight algorithm converged in 4 iterations.

The matrixpls function returns a vector of estimates with the class matrixpls. The final
values of the matrices used in the iterative estimation procedure, weight history, and other
data about the calcuation are returned as attributes:

names(attributes(political.out))

[1] "names" "S" "E" "iterations" "converged"

[6] "history" "C" "IC" "inner" "reflective"

[11] "formative" "W" "model" "call" "class"

Because the matrixpls function aggregates preliminary results from all calculation stages,
the exact matrices that are returned depend on the functions and options used. All matrices
are described later in the paper.

2.2. Traditional indicator weighting schemes

matrixpls implements three traditional indicator weighting systems: equal weights, factor
score weights, and principal component weights. The weights are calculated blockwise using
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the factor analysis and principal component analysis functions form the psych package (Revelle
2015).

The following code example demonstrates the use of these three indicator weighting systems
and compares the results with the PLS results for the political democracy example.

Example: Traditional indicator weighting systems

fixed.out <- matrixpls(cov(PoliticalDemocracy),model,

weightFun = weightFun.fixed)

factor.out <- matrixpls(cov(PoliticalDemocracy),model,

weightFun = weightFun.factor)

principal.out <- matrixpls(cov(PoliticalDemocracy),model,

weightFun = weightFun.principal)

cbind(political.out, fixed.out, factor.out, principal.out)

political.out fixed.out factor.out principal.out

dem60~ind60 0.40 0.39 0.42 0.40

dem65~ind60 0.20 0.20 0.17 0.20

dem65~dem60 0.79 0.78 0.78 0.78

ind60=~x1 0.95 0.95 0.93 0.95

ind60=~x2 0.97 0.97 0.99 0.97

ind60=~x3 0.92 0.93 0.89 0.93

dem60=~y1 0.88 0.88 0.87 0.88

(part of the output omitted)

Because the results objects are vectors, we can conveniently bind them as a matrix for com-
parison. The differences are small, which is to be expected because indicator weighting has
generally a very small effect on reliability (Cohen 1990; Raju et al. 1999; Bobko, Roth, and
Buster 2007).

2.3. Optimized weights

The third alternative to PLS weight calculation and the more traditional indicator weight
algorithms is optimized weights. These weights are numerically optimized to minimize a
criterion value calculated based on the matrixpls result object. (Maximization can be done
by taking a negative of the criterion.) Although PLS weights are often claimed to be optimal
in the literature about PLS, the literature is unclear for which specific purpose the weights
are optimal for and we consequently also lack any proofs of optimality (Rönkkö, McIntosh,
and Antonakis 2015). In contrast, numerical optimization of weights can be used to produce
optimal weights.

Optimized weights are calculated with the weightFun.optim function:

weightFun.optim(S, model, W.model, parameterEstim = parameterEstim.separate,

optimCrit = optimCrit.maximizeInnerR2, method = "BFGS", ...,

validateInput = TRUE, standardize = TRUE)

The function signature is very similar to the matrixpls function. The optimCriterion is a
function that calculates the criterion value from matrixpls return object. The criterion is
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minimized by adjusting the weights using the optim function from the stats package. The
default optimization method is Broyden–Fletcher–Goldfarb–Shannon algorithm, but this can
be changed with the method argument and other parameters, which are passed on to optim.

The optimization starts by applying parameterEstim to the starting weights and calculates
the criterion value based on the results using optimCriterion function. After this, the algo-
rithm tries several alternative weights to decide the direction and step size which are used to
decide on the new weights. Optimization proceeds then by calculating a new criterion value
with the new weights and then calculating new direction and step size. This iterative adjust-
ment of weights continues until convergence. matrixpls provides three built-in optimization
criterion functions shown in Table 6.

Table 6: Weight optimization criterion functions

optimCrit.maximizeInnerR2 Returns the negative of mean of R2 of all regressions in
the inner matrix. Leads to maximising the mean R2

of these regressions. (default)

optimCrit.maximizeIndicatorR2 Returns the negative of mean of R2 of all regressions in
the reflective matrix. Leads to maximising the mean
R2 of these regressions.

optimCrit.maximizeFullR2 Returns the negative of mean of R2 of all regressions in
the inner matrix and the reflective matrix. Leads
to maximising the mean of R2 of these regressions.

optimCrit.gsca GSCA optimization criterion.
Described later in the paper.

Example: Comparing inner model explained variance over four sets of weights

In the example below we create an arbitrary correlation matrix of six variables which we use
to define three composites, A, B, and C of two indicators each. The composite C is then
regressed on A and B. We compare the R2 value of this regression using two sets of PLS
weights, equal weights, and weights optimized for maximizing R2.

S <- diag(6)

S[upper.tri(S, diag = FALSE)] <- c(.3,

-.4,-.4,

.4,.4,.3,

.3,.3,.3,.3,

.3,.3,.3,.3,.3)

S[lower.tri(S, diag = FALSE)] <- t(S)[lower.tri(S, diag = FALSE)]

inner <- matrix(c(0,0,1,

0,0,1,

0,0,0),3,3)

reflective <- diag(3)[rep(1:3, each = 2),]
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formative <- matrix(0,3,6)

colnames(inner) <- rownames(inner) <- colnames(reflective) <-

rownames(formative) <- c("A","B","C")

colnames(S) <- rownames(S) <- colnames(formative) <-

rownames(reflective) <- c("a1","a2","b1","b2","c1","c2")

model <- list(inner = inner,

reflective = reflective,

formative = formative)

modeA <- matrixpls(S,model, outerEstim = outerEstim.modeA)

modeB <- matrixpls(S,model, outerEstim = outerEstim.modeB)

fixed <- matrixpls(S,model, weightFun = weightFun.fixed)

optimR2 <- matrixpls(S,model, weightFun = weightFun.optim)

rbind(ModeA = r2(modeA),

ModeB = r2(modeB),

Fixed = r2(fixed),

Optim = r2(optimR2))

A B C

ModeA 0 0 0.43

ModeB 0 0 0.43

Fixed 0 0 0.43

Optim 0 0 0.93

In this particular scenario, the optimized weights result in 118% higher R2 value than either
of the PLS weights.

2.4. GSCA estimation

Generalized structured component analysis differes from PLS by defining an explicit optimiza-
tion criterion and an algorithm for weight calculation (Hwang and Takane 2004). However,
the initially presented algorith contained a scaling error that was corrected only after six
years in 2010 (Hwang et al. 2010; Henseler 2010; Hwang, Malhotra, and Kim 2010; Henseler
2012). matrixpls addresses the scaling issue by always standardizing composites and unless
the standardize option is set to false also the indicators.

The optimization criterion for the corrected GSCA is to minimize the sum of squares of all
regressions specified in inner and reflective, which is equivalent to maximixing the sum of
R2 of these regressions. In the original GSCA specification, the formative model, if included,
always overlap completely with the indicators forming the composite and therefore the R2

of regressions in the formative part of the model is always 1 and therefore the formative

matrix is ignored when calculating the GSCA weights.

The GSCA estimation algorithm consists of two steps. In the first step, all model regressions
are estimated by minimizing the sum of squared residuals keeping the weights fixed. In the
second step, the sum of squared residuals of the same regressions are minimized for weights
keeping the regression coefficients fixed.

matrixpls implementes GSCA using the functions innerEstim.gsca and outerEstim.gsca

that are used with the weightFun.pls weight function. The algorithm starts by generating
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initial composites using the starting weights. The intial composites are first used to estimate
the inner weight matrix E consisting of the regression coefficients between the composites
using the function innerEstim.gsca. Because some of the composites are exogenous to other
composites, the E matrix from GSCA inner estimation should not be used with PLS outer
estimation functions.

The outer estimation function outerEstim.gsca starts by estimating the regression models
between indicators and composites using the reflective matrix. These regression coefficients
and the E matrix can be combined to form the A matrix in the Hwang and Takane (2004)
article. This completes the first step of the GSCA estimation algorithm.

In the second step, the weights are updated holding the regression coeffiecients fixed. Because
one weight can be used in multiple equations, the sum of squares cannot be minimized by es-
timating each regression equation separately. Rather, the weights are updated one composite
at a time taking into consideration all equations where the composite is used. In Hwang and
Takane (2004), the weights for one composite are defined by specifying a series of regression
analyses where the indicators are independent variables. These regressions are then estimated
simultaneously by stacking the data so that the system of equations can be estimated with
OLS estimator in one go. This is equivalent to collecting all covariances between the inde-
pendent variables and dependent variables into a matrix and then taking a mean over all
dependent variables so that we have a vector of mean covariances for each independent vari-
able. This aggregated covariance vector is then used with the sample covariance matrix of the
independent variables obtain new least squares estimates of the weights for the composite.

Hwang and Takane present the above mention algorithm as a way to minimize the GSCA es-
timation criterion. However, they note that the algorithm many not result in global optimum
(Hwang and Takane 2004, 87–88). In matrixpls these scenarios can be addressed by us-
ing numerical optimization with the weightFun.optim weight function and optimCrit.gsca

optimization criterion, which together maximize the GSCA estimation criterion by using nu-
merical optimization of the weights. Because the GSCA optimization criterion does not have
known closed-form derivatives, the hessian matrix used by the optimization algorithm must
be calculated numerically. This makes the weight optimization technique much slower than
the alternating least squares technique.

The example below demonstrates this and compares the results against GSCA implementation
provided by the ASGSCA package (Romdhani et al. 2014) available throuh Bioconductor.

Example: GSCA estimation with alternating least squares and direct numerical opti-
mization

# Run the example from ASGSCA package using GSCA estimation

data(GenPhen)

W0 <- matrix(c(rep(1,2),rep(0,8),rep(1,2),rep(0,8),rep(1,3),rep(0,7),rep(1,2)),

nrow=8,ncol=4)

B0 <- matrix(c(rep(0,8),rep(1,2),rep(0,3),1,rep(0,2)),nrow=4,ncol=4)

# Set seed becayse ASGSCA uses random numbers as starting values

set.seed(1)

GSCA.res <-GSCA(GenPhen,W0, B0,estim=TRUE,path.test=FALSE,
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latent.names=c("Gene1","Gene2",

"Clinical pathway 1",

"Clinical pathway 2"))

# Setup matrixpls to estimate the same model. Note that ASGSCA places dependent

# variables on columns but matrixpls uses rows for dependent variables

inner <- t(B0)

formative <- t(W0)

reflective <- matrix(0,8,4)

colnames(formative) <- rownames(reflective) <- names(GenPhen)

colnames(inner) <- rownames(inner) <-

rownames(formative) <- colnames(reflective) <-

c("Gene1","Gene2","Clinical pathway 1","Clinical pathway 2")

model <- list(inner = inner,

reflective = reflective,

formative = formative)

# Estimate using alternating least squares

matrixpls.res1 <- matrixpls(cov(GenPhen), model,

outerEstim = outerEstim.gsca,

innerEstim = innerEstim.gsca)

# Estimate using direct minimization of the estimation criterion

# Set the convergence criterion to be slightly stricter than normally

# to get indentical results

matrixpls.res2 <- matrixpls(cov(GenPhen), model,

weightFun = weightFun.optim,

optimCrit = optimCrit.gsca,

control = list(reltol = 1e-12))

# Compare the weights

do.call(cbind,lapply(list(ASGSCA =GSCA.res[["Weight"]],

matrixpls_als = t(attr(matrixpls.res1,"W")),

matrixpls_optim =t(attr(matrixpls.res2,"W"))),

function(W) W[W!=0]))

ASGSCA matrixpls_als matrixpls_optim

[1,] -0.31 -0.31 -0.31

[2,] 1.06 1.06 1.06

[3,] 0.08 0.08 0.08

[4,] 0.95 0.95 0.95

[5,] 0.34 0.34 0.34

[6,] 0.49 0.49 0.49

[7,] 0.53 0.53 0.53

[8,] 0.66 0.66 0.66

[9,] 0.59 0.59 0.59
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# Check the criterion function values

optimCrit.gsca(matrixpls.res1)

[1] 1.9

optimCrit.gsca(matrixpls.res2)

[1] 1.9

2.5. PLSc and other disattenuation techniques

Recent research by Dijkstra and coauthors (2011; Dijkstra and Henseler 2015b; Dijkstra and
Henseler 2015a) introduced the correction for attenuation to PLS literature. Labeled as PLSc,
Dijkstra’s technique consists of four enhancements to the traditional PLS analysis:

1. Consistent estimation of factor loadings
2. Consistent estimation of the reliabilities of weighted composite
3. Application of correction for attenuation using the reliability estimates
4. (optionally) two-stage least square (2SLS) estimation of the inner matrix regressions

matrixpls implements this full collection of techniques with a collection of functions. Table
7 list the included factor loading estimation functions.

Table 7: Factor loading estimation functions
estimator.regression Estimates loadings as regressions of indicators on composites.

(default)

estimator.plscLoadings Dijkstra’s technique. Estimates loadings one block at a time
using MINRES estimator and constraining the loadings to
be proportinal to the weights.

estimator.efaLoadings Estimates loadings one block at a time with using the fa

function of the psych package. Defaults to MINRES estimator,
but this can be changed with the fm parameter.

estimator.cfaLoadings Estimates all loadings simultaneously with using the cfa

function of the lavaan package. Defaults to ML estimator,
but this can be changed with the estimator parameter.

The consistency of the loading estimates produced by Dijkstra’s technique (estimator.plscLoadings)
requires that the weights are are asymptotically proportional to the loadings. With PLS Mode
A weights this is the case. The more traditional factor analysis techniques, implemented in
the estimator.efaLoadings and estimator.cfaLoadings do not depend on any particular
set of weights and are therefore more general.

Setting the disattenuate parameter to TRUE enables disattenuation of the composite cor-
relation matrix. The composite reliabilities required for disattenuation are calculated with
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the function provided as the reliabilities parameter. The default reliability function is a
general function for calculating the reliability of a weighted composites, of which Dijkstra’s
reliability function is a special case. The estimated reliabilities are available as the Q vector
after estimation.

The following code example demonstrates the use of disattenuation.

Example: PLSc and other dissattenuation techniques

# Run the education example from the book

# Sanchez, G. (2013) PLS Path Modeling with R

# Trowchez Editions. Berkeley, 2013.

# http://www.gastonsanchez.com/PLS Path Modeling with R.pdf

education <- read.csv("http://www.gastonsanchez.com/education.csv")

Support <- c(0, 0, 0, 0, 0, 0)

Advising <- c(0, 0, 0, 0, 0, 0)

Tutoring <- c(0, 0, 0, 0, 0, 0)

Value <- c(1, 1, 1, 0, 0, 0)

# Omit two paths (compared to teh model in the book) to achieve

# identification of the 2SLS analysis

Satisfaction <- c(0, 0, 1, 1, 0, 0)

Loyalty <- c(0, 0, 0, 0, 1, 0)

inner <- rbind(Support, Advising, Tutoring, Value, Satisfaction, Loyalty)

reflective <- diag(6)[c(rep(1,4),

rep(2,4),

rep(3,4),

rep(4,4),

rep(5,3),

rep(6,4)),]

formative <- matrix(0, 6, 23)

colnames(inner) <- colnames(reflective) <- rownames(formative) <- rownames(inner)

rownames(reflective) <- colnames(formative) <- colnames(education)[2:24]

education.model <- list(inner = inner,

reflective = reflective,

formative = formative)

# Reverse code two variables

education[,c("sup.under","loy.asha")] <- - education[,c("sup.under","loy.asha")]

S <- cor(education[,2:24])

# PLSc with OLS regression

education.out <- matrixpls(S,education.model,

disattenuate = TRUE,
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parametersReflective = estimator.plscLoadings)

# PLSc with 2SLS regresssion

education.out2 <- matrixpls(S,education.model,

disattenuate = TRUE,

parametersReflective = estimator.plscLoadings,

parametersInner = estimator.tsls)

# Disattenuated regression with unit-weighted scales and exploratory factor analysis

# reliability estimates (with unconstrained MINRES estimator)

education.out3 <- matrixpls(S,education.model,

disattenuate = TRUE,

weightFun = weightFun.fixed,

parametersReflective = estimator.efaLoadings)

# Disattenuated GSCA with 2SLS regression after disattenuated based on

# confirmatory factor analysis reliability estimates

education.out4 <- matrixpls(S,education.model,

disattenuate = TRUE,

innerEstim = innerEstim.gsca,

outerEstim = outerEstim.gsca,

parametersInner = estimator.tsls,

parametersReflective = estimator.cfaLoadings)

# Compare the results

cbind(PLSc = education.out, PLSc_2sls = education.out2,

DR = education.out3, GSCAc = education.out4)

PLSc PLSc_2sls DR GSCAc

Value~Support 0.96 0.96 0.96 0.95

Value~Advising -0.01 -0.01 -0.03 0.00

Value~Tutoring -0.02 -0.02 -0.01 -0.01

Satisfaction~Tutoring 0.26 0.23 0.26 0.22

Satisfaction~Value 0.62 0.67 0.61 0.68

Loyalty~Satisfaction 0.89 0.83 0.90 0.82

Support=~sup.help 0.77 0.77 0.83 0.77

(part of the output omitted)

# Compare the reliability estimates

cbind(PLSc = attr(education.out,"Q"), PLSc_2sls = attr(education.out2,"Q"),

DR = attr(education.out3,"Q"), GSCAc = attr(education.out4,"Q"))

PLSc PLSc_2sls DR GSCAc

Support 0.77 0.77 0.75 0.76
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Advising 0.93 0.93 0.93 0.93

Tutoring 0.86 0.86 0.86 0.86

Value 0.91 0.91 0.91 0.91

Satisfaction 0.90 0.90 0.90 0.90

Loyalty 0.84 0.84 0.83 0.87

3. Postestimation tools

matrixpls package contains a collection of postestimation functions that can be applied to
matrixpls objects produced by the matrixpls functions. These postestimation functions
can be used to calculate predictions, model indices, and perform diagnostics on the results.

3.1. Predictions

The predict function can be used to calculate predictions based on the matrixpls object and
a dataset. Although originally developed with a strong focus on prediction of indicators, the
current partial least squares literature uses the term prediction for multiple different meanings
(Shmueli et al. 2016). In matrixpls, the default technique for calculating predictions follows
Wold’s original approach (Wold 1985).

1. Composites that are exogenous in the inner model matrix are calculated as weighted
sums of their indicators

2. The remaining composites are predicted using the equations in inner model matrix
3. The indicators are predicted using the equations in the reflective model matrix

Also two alternative prediction strategies, labeled as “redundancy” and “communality” by
Chin (2010) are implemented.

The predict function then returns the matrix of indicators. The following example demon-
strates calculating a model with a sample, calculating predictions from a hold-out samples,
blindfolding, assessing prediction error, and calculating the Q2 predictive relevance statistics.

Example: Predictions using the ECSI mobi dataset

library(semPLS)

data(ECSImobi)

# Construct the model based on the ECSImobi example

model <- list(inner = t(ECSImobi$D),

reflective = ECSImobi$M,

formative = t(ECSImobi$M))

model$formative[] <- 0

# Estimation using covariance matrix

matrixpls.out <- matrixpls(cov(mobi),
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model = model,

standardize = FALSE)

# Calculate within-sample predictions

predictions <- predict(matrixpls.out, mobi)

# Calculate root mean squared prediction errors

sqrt(apply((predictions-mobi[61:75,])**2,2,mean))

CUEX1 CUEX2 CUEX3 CUSA1 CUSA2 CUSA3 CUSCO CUSL1 CUSL2 CUSL3 IMAG1 IMAG2

1.8 2.2 2.1 1.6 2.6 1.7 2.3 3.8 3.4 3.0 1.5 1.6

IMAG3 IMAG4 IMAG5 PERQ1 PERQ2 PERQ3 PERQ4 PERQ5 PERQ6 PERQ7 PERV1 PERV2

2.9 1.6 1.9 1.8 2.0 2.2 1.6 1.4 1.4 1.8 3.1 2.6

# Mimic the blindfolding procedure used in semPLS

predictions.blindfold <- matrixpls.crossvalidate(mobi,

model = model,

blindfold = TRUE,

predictionType = "redundancy",

groups = 4)

# Q2 predictive relevance

q2(mobi, predictions.blindfold, model)

Q2 predictive relevance statistics

Overall Q2

0.21

Block Q2

Image Expectation Quality Value Satisfaction

0.20 0.11 0.17 0.26 0.46

Complaints Loyalty

0.26 0.17

Indicator Q2

CUEX1 CUEX2 CUEX3 CUSA1 CUSA2 CUSA3 CUSCO CUSL1 CUSL2 CUSL3 IMAG1 IMAG2

0.12 0.14 0.08 0.36 0.45 0.52 0.26 0.21 0.01 0.40 0.24 0.13

IMAG3 IMAG4 IMAG5 PERQ1 PERQ2 PERQ3 PERQ4 PERQ5 PERQ6 PERQ7 PERV1 PERV2

0.12 0.31 0.20 0.27 0.10 0.18 0.15 0.16 0.20 0.17 0.22 0.33

# The results are similar to semPLS q2 values, but not exactly identical due to differences

# in how the two packages apply standardization when calculating predictions.

ecsi <- sempls(model=ECSImobi, data=mobi, E="C")

All 250 observations are valid.

Converged after 6 iterations.

Tolerance: 1e-07

Scheme: centroid
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qSquared(ecsi, d=4, dlines = FALSE)

Q-Squared

Image .

Expectation 0.11

Quality 0.18

Value 0.26

Satisfaction 0.44

Complaints 0.26

Loyalty 0.21

3.2. Residual analysis

The residuals function calculates two kinds of residuals. The observed residuals are empir-
ical residuals as presented by Lohmöller (1989, ch 2.4) or model implied residuals as used by
Henseler et al. (2014). The model implied residuals are calculated by comparing the fitted
covariance matrix, obtained with the fitted function, against the observed covariance ma-
trix. fitted computes the model implied covariance matrix by combining inner, reflective,
and formative as a simultaneous equations system. The error terms are constrained to be
uncorrelated and covariances between exogenous variables are fixed at their sample values.
Defining a composite as dependent variable in both inner and formative creates an impossible
model and results in an error.

Two versions of the SRMR index are provided for both types of residuals, the traditional
SRMR that includes all residual covariances, and the version proposed by Henseler et al.
(2014) where the within-block residual covariances are ignored.

Example: Calculating observed and implied residuals

residuals(political.out)

Inner model (composite) residual covariance matrix

dem60 dem65

dem60 0.84 0.66

dem65 0.66 0.22

Outer model (indicator) residual covariance matrix

x1 x2 x3 y1 y2 y3 y4 y5 y6 y7 y8

x1 0.09 -0.03 -0.08 0.04 -0.10 0.02 0.12 0.16 -0.07 -0.04 0.03

x2 -0.03 0.06 -0.04 -0.02 -0.07 0.00 0.09 0.11 -0.06 -0.03 0.01

x3 -0.08 -0.04 0.15 -0.08 -0.09 -0.07 0.06 0.04 -0.07 -0.06 -0.05

y1 0.04 -0.02 -0.08 0.22 -0.11 -0.02 -0.10 0.10 0.01 0.01 -0.02

y2 -0.10 -0.07 -0.09 -0.11 0.34 -0.20 -0.01 -0.05 0.11 -0.03 -0.03

y3 0.02 0.00 -0.07 -0.02 -0.20 0.37 -0.11 0.00 -0.15 0.05 -0.09

y4 0.12 0.09 0.06 -0.10 -0.01 -0.11 0.19 0.00 0.00 0.00 0.04

y5 0.16 0.11 0.04 0.10 -0.05 0.00 0.00 0.30 -0.14 -0.05 -0.12

y6 -0.07 -0.06 -0.07 0.01 0.11 -0.15 0.00 -0.14 0.29 -0.13 0.00

y7 -0.04 -0.03 -0.06 0.01 -0.03 0.05 0.00 -0.05 -0.13 0.24 -0.07

y8 0.03 0.01 -0.05 -0.02 -0.03 -0.09 0.04 -0.12 0.00 -0.07 0.19
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Residual-based fit indices

Value

Communality 0.30

Redundancy 0.27

SMC 0.47

RMS outer residual covariance 0.08

RMS inner residual covariance 0.09

SRMR 0.07

SRMR (Henseler) 0.07

residuals(political.out, observed = FALSE)

Model implied residual covariance matrix

x1 x2 x3 y1 y2 y3 y4 y5 y6 y7 y8

x1 0.00 -0.03 -0.08 0.04 -0.10 0.02 0.12 0.16 -0.07 -0.04 0.03

x2 -0.03 0.00 -0.04 -0.02 -0.07 0.00 0.09 0.11 -0.06 -0.03 0.01

x3 -0.08 -0.04 0.00 -0.08 -0.09 -0.07 0.06 0.04 -0.07 -0.06 -0.05

y1 0.04 -0.02 -0.08 0.00 -0.11 -0.02 -0.10 0.10 0.01 0.01 -0.02

y2 -0.10 -0.07 -0.09 -0.11 0.00 -0.20 -0.01 -0.05 0.11 -0.03 -0.03

y3 0.02 0.00 -0.07 -0.02 -0.20 0.00 -0.11 0.00 -0.15 0.05 -0.09

y4 0.12 0.09 0.06 -0.10 -0.01 -0.11 0.00 0.00 0.00 0.00 0.04

y5 0.16 0.11 0.04 0.10 -0.05 0.00 0.00 0.00 -0.14 -0.05 -0.12

y6 -0.07 -0.06 -0.07 0.01 0.11 -0.15 0.00 -0.14 0.00 -0.13 0.00

y7 -0.04 -0.03 -0.06 0.01 -0.03 0.05 0.00 -0.05 -0.13 0.00 -0.07

y8 0.03 0.01 -0.05 -0.02 -0.03 -0.09 0.04 -0.12 0.00 -0.07 0.00

Residual-based fit indices

Value

SRMR 0.07

SRMR (Henseler) 0.07

3.3. Commonly used model quality indices

matrixpls implements a number of model quality indices. Each index or set of indices is
implemented as a separate function. The summary method of matrixpls object prints out a
collection of these indicess.

Example: Calculating model quality indices

summary(political.out)

matrixpls parameter estimates

Est.

dem60~ind60 0.40

dem65~ind60 0.20

dem65~dem60 0.79

ind60=~x1 0.95

ind60=~x2 0.97

ind60=~x3 0.92
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dem60=~y1 0.88

(part of the output omitted)

matrixpls weights

x1 x2 x3 y1 y2 y3 y4 y5 y6 y7 y8

ind60 0.38 0.37 0.31 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00

dem60 0.00 0.00 0.00 0.31 0.27 0.26 0.33 0.0 0.00 0.00 0.00

dem65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3 0.28 0.29 0.29

Weight algorithm converged in 4 iterations.

Total Effects (column on row)

ind60 dem60

dem60 0.40 0.00

dem65 0.51 0.79

Direct Effects

ind60 dem60

dem60 0.4 0.00

dem65 0.2 0.79

Indirect Effects

ind60 dem60

dem60 0.00 0

dem65 0.32 0

Inner model squared multiple correlations (R2)

ind60 dem60 dem65

0.00 0.16 0.78

Inner model (composite) residual covariance matrix

dem60 dem65

dem60 0.84 0.66

dem65 0.66 0.22

Outer model (indicator) residual covariance matrix

x1 x2 x3 y1 y2 y3 y4 y5 y6 y7 y8

x1 0.09 -0.03 -0.08 0.04 -0.10 0.02 0.12 0.16 -0.07 -0.04 0.03

x2 -0.03 0.06 -0.04 -0.02 -0.07 0.00 0.09 0.11 -0.06 -0.03 0.01

x3 -0.08 -0.04 0.15 -0.08 -0.09 -0.07 0.06 0.04 -0.07 -0.06 -0.05

y1 0.04 -0.02 -0.08 0.22 -0.11 -0.02 -0.10 0.10 0.01 0.01 -0.02

y2 -0.10 -0.07 -0.09 -0.11 0.34 -0.20 -0.01 -0.05 0.11 -0.03 -0.03

y3 0.02 0.00 -0.07 -0.02 -0.20 0.37 -0.11 0.00 -0.15 0.05 -0.09

y4 0.12 0.09 0.06 -0.10 -0.01 -0.11 0.19 0.00 0.00 0.00 0.04

y5 0.16 0.11 0.04 0.10 -0.05 0.00 0.00 0.30 -0.14 -0.05 -0.12

y6 -0.07 -0.06 -0.07 0.01 0.11 -0.15 0.00 -0.14 0.29 -0.13 0.00

y7 -0.04 -0.03 -0.06 0.01 -0.03 0.05 0.00 -0.05 -0.13 0.24 -0.07

y8 0.03 0.01 -0.05 -0.02 -0.03 -0.09 0.04 -0.12 0.00 -0.07 0.19

Residual-based fit indices

Value

Communality 0.30
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Redundancy 0.27

SMC 0.47

RMS outer residual covariance 0.08

RMS inner residual covariance 0.09

SRMR 0.07

SRMR (Henseler) 0.07

Absolute goodness of fit: 0.61

Composite Reliability indices

ind60 dem60 dem65

0.96 0.91 0.92

Average Variance Extracted indices

ind60 dem60 dem65

0.90 0.72 0.74

AVE - largest squared correlation

ind60 dem60 dem65

0.636 -0.027 -0.004

Heterotrait-monotrait matrix

ind60 dem60 dem65

ind60 0.00

dem60 0.43 0.00

dem65 0.56 0.98 0.00

4. Bootstrapping

The variance of the PLS results is typically estimated with boostrapping. Bootstrapping
is needed because the sampling distribution of PLS and other model-dependent indicator
weights is unknown and therefore there is no closed form solutions to the standard errors of
the parameter estimates.

matrixpls implements bootstrapping by integrating with the boot package (Canty and Ripley
2016; Davison and Hinkley 1997) with the matrixpls.boot function. The function takes the
following arguments:

matrixpls.boot(data, model, ..., R = 500, signChange = NULL,

parallel = c("no", "multicore", "snow"), ncpus = getOption("boot.ncpus",

1L), dropInadmissible = FALSE, stopOnError = FALSE, extraFun = NULL)

data is a data.frame or a matrix of raw data, from which R bootstrap samples are drawn.
In addition to the data and the number of samples, the function requires also that model is
specified. As with most functions in matrixpls, matrixpls.boot passes most of its arguments
down to other functions and accepts any additional arguments used by matrixpls or boot.
The arguments of the boot function allow
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parallel and ncpus can be used to enable parallel processing of bootstrap replications. By
default, all bootstrap replications are calculated on a single processor core. Computational
time can be reduced significantly by dividing the bootstrap replications on multiple processor
cores. The only drawback in using parallel processing is that if any of the bootstrap replica-
tions produced an error, the full error message is discarded. Therefore, when troubleshooting
an analysis, it is always a good idea to start by disabling parallel processing.

By default, only the parameter estimates are boostrapped, but boostrapping other statistics
is possible with the extraFun argument.

Example: Boostrapping estimates

The following example demonstrates bootstrapping the estimates. Because the summary

method prints out the full matrixpls summary, including all estimates and model quality
indices, only the parts relevant to bootstrapping are shown.

set.seed(1)

boot.out <- matrixpls.boot(satisfaction, model = satisfaction.model, R = 500,

parallel = "multicore", ncpus = parallel::detectCores())

# Summary method prints confidence intervals and p values

summary(boot.out)

Calculating confidence intervals.

(part of the output omitted)

Bootstrap SEs and significance tests

Estimate SE t p (regression) p (Hair) p (Henseler) p (z)

EXPE~IMAG 0.56 0.05 11.60 0.0 0.00 0.00 0.00

SAT~IMAG 0.19 0.05 3.62 0.0 0.00 0.00 0.00

LOY~IMAG 0.29 0.07 4.22 0.0 0.00 0.00 0.00

QUAL~EXPE 0.85 0.02 41.86 0.0 0.00 0.00 0.00

VAL~EXPE 0.12 0.07 1.68 0.1 0.09 0.09 0.09

SAT~EXPE 0.01 0.07 0.13 0.9 0.90 0.90 0.90

VAL~QUAL 0.66 0.08 8.72 0.0 0.00 0.00 0.00

(part of the output omitted)

Bootstrap confidence intervals

Estimate Norm Basic Perc BCa

EXPE~IMAG 0.56 ( 0.46 0.65) ( 0.47 0.66) ( 0.46 0.65) ( 0.44 0.64)

SAT~IMAG 0.19 ( 0.08 0.28) ( 0.07 0.28) ( 0.10 0.30) ( 0.09 0.28)

LOY~IMAG 0.29 ( 0.14 0.41) ( 0.15 0.41) ( 0.17 0.43) ( 0.13 0.41)

QUAL~EXPE 0.85 ( 0.80 0.88) ( 0.81 0.89) ( 0.80 0.88) ( 0.80 0.88)

VAL~EXPE 0.12 (-0.02 0.25) (-0.03 0.25) (-0.02 0.27) (-0.03 0.25)

SAT~EXPE 0.01 (-0.12 0.14) (-0.12 0.13) (-0.12 0.13) (-0.12 0.13)

VAL~QUAL 0.66 ( 0.51 0.81) ( 0.51 0.83) ( 0.49 0.81) ( 0.49 0.81)

(part of the output omitted)
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The first output block shows the parameter estimates, boostrap standard errors, t statistics
(estimate/SE), and four different p values.

The significance of OLS regression coefficients, used as the default parameter estimation
technique, is tested by the one-sample t test with n – k – 1 degrees of freedom, where n is the
number of observations and k is the number of independent variables (Wooldridge 2009, sec.
4.2). However, introductory texts on PLS argue that the degrees of freedom should be n – 1
(Hair et al. 2014, 134) or n + m – 2, where m is always 1 and n is the number of bootstrap
samples (Henseler, Ringle, and Sinkovics 2009, 305). The cited sources do not explain how
these alternative references distributions are derived. Finally, p values can also be calculated
with the z test. The four p values “regression”, “Hair”, “Henseler”, and “z” refer to these four
techniques in this order.

The second output block shows confidence intervals, calculated with the boot.ci function of
the boot package.

Example: Boostrap-based model testing

The following example demonstrates how bootstrapping can be used to generate an empical
reference distribution for a model test statistic for the education analysis presented earlier in
the paper. The approach is based on the idea presented by Yuan and Hayashi (2003) and its
adaptation to PLS by Dijkstra and Henseler (2015b)1.

# Define a function that calculates the test statistic as the squared Euclidean distance

# between the empirical and the model implied correlation matrix

calculateTestStat <- function(matrixpls.res){

S <- attr(matrixpls.res,"S")

Sigma <- fitted(matrixpls.res)

sum((S-Sigma)[lower.tri(S, diag = FALSE)]**2)

}

# Function that tranforms the data sets in the way proposed by Yuan & Hayashi (2003)

scaleDataSet <- function(data, Sigma){

S <- cor(data)

# Ensure that the variables are in the same order

if(! identical(colnames(S), colnames(Sigma))) stop("data is inconsistent with Sigma")

# singular value decomposition

Ssvd=svd(S); Sigsvd=svd(Sigma)

dS=Ssvd$d; dSig=Sigsvd$d

uS=Ssvd$u; uSig=Sigsvd$u

vS=Ssvd$v; vSig=Sigsvd$v

#S**(-1/2)

S_half=uS%*%(diag(dS**(-1/2)))%*%t(vS)

# Sigma_hat**(1/2)

Sig_half=uSig%*%(diag(dSig**(1/2)))%*%t(vSig)

# scale factor Sig_hat**(1/2)%*%S**(-1/2)

1This example is based on code contributed by Florian Schuberth.
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sf=S_half%*%Sig_half

sdata <- as.matrix(data)%*%sf

colnames(sdata) <- colnames(data)

sdata

}

# Calculate the empirical reference distribution

scaledEducation <- scaleDataSet(education[,2:24], fitted(education.out))

set.seed(1)

boot.out <- matrixpls.boot(scaledEducation,

model = education.model,

disattenuate = TRUE,

parametersReflective = estimator.plscLoadings,

R = 5000, parallel = "multicore", ncpus = parallel::detectCores(),

# Calculate the test statistic for each bootstrap replication

extraFun = calculateTestStat)

# The reference distribution is stored as the last entry in the boostrap results

ref <- boot.out$t[,ncol(boot.out$t)]

testStat <- calculateTestStat(education.out)

# Get the p value

sum(ref>testStat)/length(ref)

[1] 0.001

# Present the disribution and the value of the statistic graphically

plot(density(ref), xlim = c(0, max(c(ref,testStat))), main = "Distribution of the test statistic")

abline(v=testStat, col = "red")
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In this example, the bootstrap-based model test conclusively rejects the model.

5. Monte Carlo simulations

matrixpls integratates with simsem (Pornprasertmanit, Miller, and Schoemann 2016) Monte
Carlo simulation framework. Monte Carlo simulation involves drawing multiple independent
samples of random variables from a population model chosen by the researcher, using each
of these samples to estimate a model, and collecting the results (Boomsma 2013). After a
sufficient number of replications have been generated, the results of the replications are an-
alyzed, typically by calculating summary statistics, such as the bias or mean squared error,
or by plotting the sampling distributions of the estimates. Monte Carlo simulations are com-
monly used to analyze the robustness of estimators under violation of their assumptions (e.g.,
small sample size, non-normal data), to compare estimators under different conditions, and
to analyze procedures for which there are no theoretical results that could be used (Boomsma
2013).

Given that the sampling distribution of PLS weights remains unknown, most methodological
research on the algorithm is based on simulations. However, simulations can be useful for
applied researchers as well. Besides important for power analysis (Aguirre-Urreta and Rönkkö
2015), simulations can be useful in teaching or self-learning of statistical techniques (Antonakis
et al. 2010).

Monte Carlo simulations are implemented with the matrixpls.sim function:

matrixpls.sim(nRep = NULL, model = NULL, n = NULL, ..., cilevel = 0.95,

citype = c("norm", "basic", "stud", "perc", "bca"), boot.R = 500,

fitIndices = fitSummary, outfundata = NULL, outfun = NULL,
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prefun = NULL)

The nRep argument defines the number of Monte Carlo replications. model is a matrixpls
model specification, either in the native format or as lavaan syntax. If lavaan syntax is used,
then that syntax can be used for defining the population model. alternatively, the generate

argument defining the data generation model is required. This argument is not part of the
function definition, but is passed through to sim function of simsem package.

The cilevel, citype, and boot.R define how bootstrapped confidence intervals are cal-
culated. The outfundata, outfun, and prefun are functions that can be used for post-
processing individual replications or pre-processing datasets. fitIndices a function that is
used for calculating model quality indices after estimation.

matrixpls.sim integrates tightly with the sim function of simsem package. Monte Carlo
simulation can be thought of consisting of four types of tasks: 1) controlling the simulation,
2) generating the datasets, 3) calculating statistics based on the datasets, and 4) summarizing
the results. Out of these four tasks, only calculation of statistics is done by matrixpls and
other three tasks are handled by simsem. Planning of simulation studies should therefore be
started by studying the simsem package documentation.

5.1. Example: Power analysis

This example demonstrates power analysis by implementing the non-normal condition from
the article by Aguirre-Urreta and Rönkkö (2015). The simulation runs 1000 replications with
500 bootstrap samples each for a total of 501 000 PLS analyses.

library(simsem)

model<-"! factor loadings

A=~0.7*x1 + 0.7*x2 + 0.7*x3

B=~0.7*x4 + 0.7*x5 + 0.8*x6 + 0.8*x7

C=~0.6*x8 + 0.6*x9 + 0.6*x10 + 0.8*x11 + 0.8*x12

D=~0.8*x13 + 0.8*x14 + 0.8*x15

!latent regressions

D ~ 0.3*A + 0.3*C

C ~ 0.1*B + 0.5*A

! error variances, variances and covariances

A ~~ 1.0*A

B ~~ 1.0*B

C ~~ 0.71*C

D ~~ 0.725*D

B ~~ 0.3*A

x1 ~~ 0.51*x1

x2 ~~ 0.51*x2

x3 ~~ 0.51*x3

x4 ~~ 0.51*x4

x5 ~~ 0.51*x5

x6 ~~ 0.36*x6

x7 ~~ 0.36*x7
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x8 ~~ 0.64*x8

x9 ~~ 0.64*x9

x10 ~~ 0.64*x10

x11 ~~ 0.36*x11

x12 ~~ 0.36*x12

x13 ~~ 0.36*x13

x14 ~~ 0.36*x14

x15 ~~ 0.36*x15"

# Non-normal data

skewness <- c(0.50, 0.50, 0.50, 0.50, 0.50,

0.50, 0.50, 0.50, 0.75, 0.75,

0.75, 0.75, 0.75, 0.75, 0.75)

kurtosis <- c(1, 1, 1, 1, 1,

1, 1, 1, 1.50, 1.50,

1.50, 1.50, 1.50, 1.50, 1.50)

# Simulate

nonNorm <- matrixpls.sim(1000, model, # Basic arguments

generate = list(model = model, # Data generation

skewness = skewness,

kurtosis = kurtosis),

n=100,

multicore = TRUE, # Additional arguments

completeRep = TRUE)

Progress tracker is not available when 'multicore' is TRUE.

# Print the results

summary(nonNorm)

RESULT OBJECT

Model Type

[1] "function"

========= Fit Indices Cutoffs ============

Alpha

Fit Indices 0.1 0.05 0.01 0.001 Mean SD

srmr 0.09 0.09 0.14 0.16 0.08 0.01

========= Parameter Estimates and Standard Errors ============

Est. Avg Est. SD Avg SE Power Param Bias Coverage

C~A 0.40 0.09 0.08 0.99 0.5 -0.10 0.75

D~A 0.26 0.10 0.10 0.70 0.3 -0.04 0.92

C~B 0.14 0.09 0.11 0.31 0.1 0.04 0.93

D~C 0.28 0.10 0.10 0.78 0.3 -0.02 0.92

A=~x1 0.81 0.05 0.05 1.00 0.7 0.11 0.38

A=~x2 0.81 0.05 0.06 1.00 0.7 0.11 0.43

A=~x3 0.81 0.05 0.06 1.00 0.7 0.11 0.43

B=~x4 0.75 0.15 0.17 0.94 0.7 0.05 0.88

B=~x5 0.76 0.14 0.18 0.94 0.7 0.06 0.87
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B=~x6 0.82 0.12 0.17 0.95 0.8 0.02 0.92

B=~x7 0.82 0.13 0.17 0.96 0.8 0.02 0.92

C=~x8 0.69 0.07 0.07 1.00 0.6 0.09 0.64

C=~x9 0.69 0.07 0.07 1.00 0.6 0.09 0.63

C=~x10 0.69 0.07 0.07 1.00 0.6 0.09 0.62

C=~x11 0.83 0.04 0.04 1.00 0.8 0.03 0.71

C=~x12 0.84 0.03 0.04 1.00 0.8 0.04 0.71

D=~x13 0.87 0.03 0.04 1.00 0.8 0.07 0.43

D=~x14 0.87 0.03 0.04 1.00 0.8 0.07 0.40

D=~x15 0.87 0.03 0.04 1.00 0.8 0.07 0.40

================== Replications =====================

Number of replications = 1000

Number of converged replications = 1000

Number of nonconverged replications:

1. Nonconvergent Results = 0

2. Nonconvergent results from multiple imputation = 0

3. At least one SE were negative or NA = 0

4. At least one variance estimates were negative = 0

5. At least one correlation estimates were greater than 1 or less than -1 = 0

6. Model-implied covariance matrices of any groups of latent variables are not

positive definite = 0

The timings of the simulation demonstrate what kind of computation times can be expected
for this kind of analysis.

summaryTime(nonNorm)

============ Wall Time ============

1. Error Checking and setting up data-generation and analysis template: 0.001

2. Set combinations of n, pmMCAR, and pmMAR: 0.000

3. Setting up simulation conditions for each replication: 0.073

4. Total time elapsed running all replications: 1003.993

5. Combining outputs from different replications: 0.163

============ Average Time in Each Replication ============

1. Data Generation: 0.138

2. Impose Missing Values: 0.000

3. User-defined Data-Transformation Function: 0.000

4. Main Data Analysis: 7.854

5. Extracting Outputs: 0.000

============ Summary ============

Start Time: 2016-06-11 23:08:28

End Time: 2016-06-11 23:25:12

Wall (Actual) Time: 1004.230

System (Processors) Time: 7993.112

Units: seconds

5.2. Example: True reliabilities and distribution of estimates

The following example replicates a simulation study presented by Rönkkö and Evermann
(2013). The example demonstrates comparing the sampling distribution of reliability of a
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composite and its correlation with another composite over three different indicator weighting
techniques: PLS Mode A, PLS Mode B, and unit weights.

library(simsem)

# Specify the data generation model using SimSem syntax

# Loadings

LY <- bind(matrix(c(.6, .7, .8, 0, 0, 0,

0, 0, 0, .6, .7, .8), 6,2))

# Factor correlations (2 different values)

RPS1 <- binds(matrix(c(1, 0, 0, 1), 2, 2))

RPS2 <- binds(matrix(c(1, .3, .3, 1), 2, 2))

# Error terms

RTE <- binds(diag(c(.64, .51, .36, .64, .51, .36)))

generateModels <- list(model.cfa(LY = LY, RPS = RPS1, RTE = RTE),

model.cfa(LY = LY, RPS = RPS2, RTE = RTE))

# Specify the computed model with lavaan syntax

analyzeModel <- "f1=~ y1 + y2 + y3

f2=~ y4 + y5 + y6

f2~f1"

coefficients <- list()

reliabilities <- list()

# We have 3 weight techniques and 2 populations: 6 conditions

for(i in 1:6){

population <- rep(1:2, each=3)[i]

technique <- rep(1:3, 2)[i]

out <- matrixpls.sim(nRep = 500, model = analyzeModel,

weightFun = ifelse(technique == 1, weightFun.fixed, weightFun.pls),

# Use Mode B for the third estimator, otherwise use Mode A

# This argument is ignored by fixed weights

outerEstim = ifelse(technique == 3, outerEstim.modeB, outerEstim.modeA),

n = 100, generate = generateModels[[population]],

sequential = TRUE, saveLatentVar = TRUE,

multicore = TRUE, boot.R = FALSE, fitIndices = NULL)

coefficients[[i]] <- out@coef[,1]

# Extract the reliability of the first composite from the matrixpls

# results objects stored as extra output

reliabilities[[i]] <- unlist(lapply(out@extraOut, function(x) attr(x,"R")[1]))

}

par(mfrow = c(2,2))

par(mar = c(4,4,1,0.5))
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plot(density(coefficients[[1]]), main = "Beta = 0", xlab = "Estimate",

xlim = c(-.6,.6), ylim = c(0,6))

lines(density(coefficients[[2]]), col = "blue")

lines(density(coefficients[[3]]), col = "red")

legend("topleft", c("Unit weights", "PLS Mode A", "PLS Mode B"),

col=c("black","blue","red"), lty = 1, cex=0.5)

plot(density(coefficients[[4]]), main = "Beta = .3", xlab = "Estimate",

xlim = c(-.6,.6), ylim = c(0,6))

lines(density(coefficients[[5]]), col = "blue")

lines(density(coefficients[[6]]), col = "red")

plot(density(reliabilities[[1]]), main = "", xlab = "Reliability",

xlim = c(-1,1), ylim = c(0,9))

lines(density(reliabilities[[2]]), col = "blue")

lines(density(reliabilities[[3]]), col = "red")

plot(density(reliabilities[[4]]), main = "", xlab = "Reliability",

xlim = c(-1,1), ylim = c(0,9))

lines(density(reliabilities[[5]]), col = "blue")

lines(density(reliabilities[[6]]), col = "red")
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6. Technical details

As explained in Section 1.1, matrixpls works by applying a series of functions on matrices
containing covariances, weights, and model specifications. The matrices are listed in Table 9
and functions in Table 8. The package can be extended by using user written functions in
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place of any of the built-in functions. Reference manual provides nore details on the built-in
function implementations.

Table 8: Types of funcions used by matrixpls

Function Description

weightFun A function for calculating indicator weights using the data
covariance matrix S, a model specification model, and a
weight pattern W.model. Returns a weigth matrix W.

parameterEstim A function for estimating the model parameters using the
data covariance matrix S, model specification model, and
weight matrix W. Returns a named vector of parameter esti-
mates.

estimator A function for estimating the parameters of one model ma-
trix using the data covariance matrix S, a model matrix
modelMatrix, and a weight matrix W. Disattenuated com-
posite correlation matrix C and indicator composite covari-
ance matrix IC are optional. Returns matrix of parameter
estimates with the same dimensions as modelMatrix.

weightSign A function for resolving weight sign ambiquity based on the
data covariance matrix S and a weight matrix W. Returns a
weigth matrix W.

outerEstim A function for calculating outer weights using the data co-
variance matrix S, a weight matrix W, an inner weight matrix
E, and a weight pattern W.model. Returns a weigth matrix
W.

innerEstim A function for calculating inner weights using the data co-
variance matrix S, a weight matrix W, and an inner model
matrix inner.mod. Returns an inner weigth matrix E.

convCheck A function that takes the old Wold and new weight Wold

matrices and returns a scalar that is compared against tol

to check for convergence.
optimCrit A function for calculating value for an optimization criterion

based on a matrixpls result object. Returns a scalar.
reliabilities A function for calculating reliability estimates based on the

data covariance matrix S, factor loading matrix loadings,
and a weight matrix W. Returns a vector of reliability esti-
mates.
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Table 9: Matrices and other objects used and returned by matrixpls functions

Matrix or Matrix Description
attribute order

S k x k the sample covariance matrix
reflective k x l the reflective model matrix with estimated parameters
c l the PLSc loading estimate correction factors
Q l the reliability estimates used in dissattenuation
R l true reliabilities of composites (squared correlation between

composites and simulated latent variable values)
formative l x k the formative model matrix with estimated parameters
IC l x k the indicator-composite covariance matrix (after disattenu-

ation, if requested)
W l x k the weight matrix
C l x l the composite correlation matrix (after disattenuation, if re-

quested)
E l x l inner weight matrix
inner l x l the inner model matrix with estimated parameters
call the function call
converged TRUE if the weight algorithm converged and FALSE otherwise
history weight optimization history as a matrix
iterations the number of iterations used by the weight algorithm
model the model specification in native format

k is the number of observed variables and l is the number of composites.
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