
Working with Two-Mode Networks in ‘multiplex’

Antonio Rivero Ostoic
School of Business and Social Sciences

Aarhus University

October 12, 2016

Social networks are systems defined by a collection of relationships among collective actors. In terms of

set theory, a relation is an ordered pair such as (x, y) that refers to a directed linkage from an element x

to an element y, where x ∈ X and y ∈ Y called the domain and codomain of the relation. The context of

a binary relation R is the overall relation set that result from the Cartesian product of the domain and

codomain or X × Y of all ordered pairs (x, y) where R is a subset of the context.

Normally a social network refers to a domain with a set of relations on such domain, which is the generic

term used to name the social entities in the system, and in such case, the system of relations is said to be

a one-mode network. However, when the domain and the codomain are not equal there are two sets of

entities that describe the entire social system, which are known as affiliation, bipartite, or else two-mode

networks.

1 Galois representation

In terms of Formal Concept Analysis, the domain and codomain of a two-mode network are characterized

respectively as a set of objects G, and a set of attributes M . A formal context is obtained with an incident

relation I ⊆ G×M between these sets, and this triple is typically represented as a data table.

> ## Fruits data set with attributes

> frt <- data.frame(yellow = c(0,1,0,0,1,0,0,0), green = c(0,0,1,0,0,0,0,1), red = c(1,0,0,1,0,0,0,0),

+ orange = c(0,0,0,0,0,1,1,0), apple = c(1,1,1,1,0,0,0,0), citrus = c(0,0,0,0,1,1,1,1))

> ## Label the objects

> rownames(frt) <- c("PinkLady","GrannySmith","GoldenDelicious","RedDelicious","Lemon","Orange","Mandarin","Lime")

> frt

yellow green red orange apple citrus

PinkLady 0 0 1 0 1 0

GrannySmith 1 0 0 0 1 0

GoldenDelicious 0 1 0 0 1 0

RedDelicious 0 0 1 0 1 0

Lemon 1 0 0 0 0 1

Orange 0 0 0 1 0 1

Mandarin 0 0 0 1 0 1

Lime 0 1 0 0 0 1

1

Galois derivations

The formal concept of a formal context is a pair of sets of objects A and attributes B that is maximally

contained on each other. A Galois derivation between G and M is defined for any subsets A ⊆ G and

B ⊆M by

A′ = m ∈M | (g,m) ∈ I (for all g ∈ A)

B′ = g ∈ G | (g,m) ∈ I (for all m ∈ B)

where A and B are said to be the extent and intent of the formal concept respectively, whereas A′ is

the set of attributes common to all the objects in the intent and B′ the set of objects possessing the

attributes in the extent.

Starting with version 1.5 it is possible to perform an algebraic analysis of two-mode networks with the

function galois() of multiplex. This command produces an adjunction between the two sets partially

ordered by inclusion, and we obtain the complete list of concepts of the context, which can be assigned

into an object with the class named “Galois” and “full”.

> ## Load first the package

> library("multiplex")

> ## Galois representation between objects and attributes

> galois(frt)

$yellow

[1] "GrannySmith, Lemon"

$green

[1] "GoldenDelicious, Lime"

$`apple, red`

[1] "PinkLady, RedDelicious"

$`citrus, orange`

[1] "Mandarin, Orange"

$apple

[1] "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"

$citrus

[1] "Lemon, Lime, Mandarin, Orange"

$`apple, citrus, green, orange, red, yellow`

character(0)

$`apple, yellow`

[1] "GrannySmith"

$`citrus, yellow`

[1] "Lemon"

$`apple, green`

[1] "GoldenDelicious"

$`citrus, green`

[1] "Lime"

[[12]]

2

[1] "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"

attr(,"class")

[1] "Galois" "full"

It is also possible to condense the labeling of the objects and attributes with the option “reduced” in

the argument labeling of the galois() function.

> gc <- galois(frt, labeling = "reduced")

$reduc

$reduc$yellow

[1] ""

$reduc$green

[1] ""

$reduc$red

[1] "PinkLady, RedDelicious"

$reduc$orange

[1] "Mandarin, Orange"

$reduc$apple

[1] ""

$reduc$citrus

[1] ""

$reduc[[7]]

character(0)

$reduc[[8]]

[1] "GrannySmith"

$reduc[[9]]

[1] "Lemon"

$reduc[[10]]

[1] "GoldenDelicious"

$reduc[[11]]

[1] "Lime"

$reduc[[12]]

character(0)

However the full labeling is useful for the construction of the hierarchy of concepts, and it is kept in the

structure of the output given by the Galois derivation.

> str(gc$full)

List of 12

$ yellow : chr "GrannySmith, Lemon"

$ green : chr "GoldenDelicious, Lime"

$ apple, red : chr "PinkLady, RedDelicious"

$ citrus, orange : chr "Mandarin, Orange"

$ apple : chr "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"

$ citrus : chr "Lemon, Lime, Mandarin, Orange"

3

$ apple, citrus, green, orange, red, yellow: chr(0)

$ apple, yellow : chr "GrannySmith"

$ citrus, yellow : chr "Lemon"

$ apple, green : chr "GoldenDelicious"

$ citrus, green : chr "Lime"

$: chr "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"

- attr(*, "class")= chr [1:2] "Galois" "full"

Partial ordering of the concepts

A hierarchy of the concepts is given by the relation subconcept–superconcept

(A,B) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B1 ⊆ B2)

For this, the function partial.order() now supports the “galois” option in the type argument where

the hierarchy of the concepts is constructed. In this case, even though the concepts have the “reduced”

option, it is the “full” labeling of the formal concepts that is the base of the ordering among these concepts

that can be designated in different ways.

> ## Partial ordering of the formal concepts with established labels

> pogcc <- partial.order(gc, type = "galois", labels = paste("c", 1:length(gc$full), sep = ""))

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

c1 1 0 0 0 0 0 0 0 0 0 0 1

c2 0 1 0 0 0 0 0 0 0 0 0 1

c3 0 0 1 0 1 0 0 0 0 0 0 1

c4 0 0 0 1 0 1 0 0 0 0 0 1

c5 0 0 0 0 1 0 0 0 0 0 0 1

c6 0 0 0 0 0 1 0 0 0 0 0 1

c7 1 1 1 1 1 1 1 1 1 1 1 1

c8 1 0 0 0 1 0 0 1 0 0 0 1

c9 1 0 0 0 0 1 0 0 1 0 0 1

c10 0 1 0 0 1 0 0 0 0 1 0 1

c11 0 1 0 0 0 1 0 0 0 0 1 1

c12 0 0 0 0 0 0 0 0 0 0 0 1

attr(,"class")

[1] "Partial.Order" "galois"

In the partial order table we can see that all concepts are included in concept 12, whereas concept 7

is included in the rest of the concepts, and hence these are the maxima and the minima of a complete

lattice that includes all these concepts. From the outputs given with the Galois derivation of this context

we can see as well that these concepts correspond to the set of objects and the set of attributes, which

are completely abridged in the reduced formal context.

Concept lattice of the context

The concept lattice of the formal context is a system of concepts partially ordered where the greatest

lower bound of the meet and the least upper bound of the join are defined as∧
t∈T

(
At, Bt

)
=
(⋂

t∈T

At,
(⋃
t∈T

Bt

)′′)
∨
t∈T

(
At, Bt

)
=
((⋃

t∈T

At

)′′
,
⋂
t∈T

Bt

)

4

We plot this type of lattice diagram with the labeling corresponding to the reduced context.

> ## First we assign the partial order of the reduced context to 'pogc'

> pogc <- partial.order(gc, type = "galois")

> ## Plot the lattice diagram

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram(pogc)

+ }

{yellow} {} {green} {}

{red} {PinkLady, RedDelicious} {orange} {Mandarin, Orange}

{apple} {} {citrus} {}

7

{} {GrannySmith} {} {Lemon}{} {GoldenDelicious} {} {Lime}

12

Figure 1: Concept Lattice of the fruits and their characteristics

Notice that the both objects and attributes not only are given just once (since this is a reduced repre-

sentation of the context), but the labels are placed instead of the nodes rather than next to them as the

typical representation of formal context. Moreover in case that a concept does not have a label, which

happens in reduced contexts, then the number of the concept is placed rather than leave blank the node.

2 Diagram levels & Filters

The construction of the concept lattice of the context allows us to have additional information about the

network relational structure. One part is concerned with the inclusion levels in the lattice structure, and

another aspect deals with downsets and upsets, which are formed from all the lower and greater bounds

of an element in the lattice diagram. Next, we take a brief look at the suitable functions to get such

information.

5

Levels in the lattice diagram

Particularly when dealing with large diagrams, it can be difficult to distinguish the different heights in

the lattice and the elements belonging to each level. Function diagram.levels() allows us to count with

such information, and we illustrate this routine with the entry pogcc that represents the partial order of

the concepts corresponding to the fruits data set.

> ## Diagram levels

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram.levels(pogcc) }

2 2 3 3 2 2 4 3 3 3 3 1

1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

Hence concepts 7 and 12 make a class of their own, whereas the rest of the concepts belong either to class

2 or to class 3.

By setting perm to TRUE, we obtain the different classes in the lattice structure in a convenient way, and

also a permuted partial order table according to the clustering.

> ## Diagram levels with permutation

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram.levels(pogcc, perm = TRUE) }

$cls

2 2 3 3 2 2 4 3 3 3 3 1

1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

$clu

[1] 2 2 3 3 2 2 4 3 3 3 3 1

$perm

c12 c1 c2 c5 c6 c3 c4 c8 c9 c10 c11 c7

c12 1 0 0 0 0 0 0 0 0 0 0 0

c1 1 1 0 0 0 0 0 0 0 0 0 0

c2 1 0 1 0 0 0 0 0 0 0 0 0

c5 1 0 0 1 0 0 0 0 0 0 0 0

c6 1 0 0 0 1 0 0 0 0 0 0 0

c3 1 0 0 1 0 1 0 0 0 0 0 0

c4 1 0 0 0 1 0 1 0 0 0 0 0

c8 1 1 0 1 0 0 0 1 0 0 0 0

c9 1 1 0 0 1 0 0 0 1 0 0 0

c10 1 0 1 1 0 0 0 0 0 1 0 0

c11 1 0 1 0 1 0 0 0 0 0 1 0

c7 1 1 1 1 1 1 1 1 1 1 1 1

Filters and Ideals

Implications among objects and attributes in an arbitrary partially ordered set representing context are

revealed by subsets in the order structure.

Let (P,≤) be an ordered set, and a, b are elements in P .

6

A non-empty subset U [resp. D] of P is an upset [resp. downset] called a filter [resp. ideal] if, for all

a ∈ P and b ∈ U [resp. D]

b ≤ a implies a ∈ U [resp. a ≤ b implies a ∈ D]

For a particular element x ∈ P , the upset ↑x formed for all the upper bounds of x is called a principal

filter generated by x. Dually, ↓ x is a principal ideal with all the lower bounds of x. Filters and ideals

not coinciding with P are called proper.

To illustrate these concepts, we apply the function fltr() of multiplex to the third element of the

partial order represented by pogc that results in a proper principal filter for this formal concept with

labels.

> ## Principal filter of the third concept

> fltr(3, pogc)

$`3`

[1] "{red} {PinkLady, RedDelicious}"

$`5`

[1] "{apple} {}"

$`12`

[1] "12"

We get the same result when introducing the one or more of the names of this concept.

> ## Principal filter of the concept with these labels

> fltr("PinkLady", pogc)

> fltr(c("red", "RedDelicious"), pogc)

Or alternatively we can combine elements from different concepts to obtain other types of filters in the
concept lattice of the context.

> ## Filter of two concepts

> fltr(c("Lemon", "Lime"), pogc)

$`9`

[1] "{} {Lemon}"

$`11`

[1] "{} {Lime}"

$`1`

[1] "{yellow} {}"

$`2`

[1] "{green} {}"

$`6`

[1] "{citrus} {}"

$`12`

[1] "12"

7

Ideals and principal ideals are obtained in a similar way with this function provided that the argument

ideal is set to TRUE.

> ## Ideal of two concepts

> fltr(c(9, 11), pogc, ideal = TRUE)

$`9`

[1] "{} {Lemon}"

$`11`

[1] "{} {Lime}"

$`7`

[1] "7"

3 Bipartite graphs

Two-mode network are depicted through bipartite graphs, where the entities in one set only can relate

to the elements placed in the other set. multiplex has a reverse dependence on multigraph for the

visualization of multiple networks, and also for bipartite graphs. Hence, we use the function bmgraph()

to plot the graph of the frt data set with the default layout option.

> ## Load the "multigraph" package

> library("multigraph")

>

> ## Plot bipartite graph

> bmgraph(frt, pch = 16:15, tcex = .8)

●

●

●

●

●

●

●

●

PinkLady

GrannySmith

GoldenDelicious

RedDelicious

Lemon

Orange

Mandarin

Lime

yellow

green

red

orange

apple

citrus

Figure 2: Bipartite graph

8

Another possibility is to apply a force-directed layout to the binomial projection of this two-mode data

set, below with some arguments for the vertices.

> ## Plot proyection of bipartite network

> bmgraph(frt, layout = "force", seed = 1, cex = 3, tcex = .7, vcol = 8, pch = 16:15)

●

●
●

●

●

● ●

●

PinkLady

GrannySmith

GoldenDelicious

RedDelicious

Lemon

Orange
Mandarin

Lime

yellow

green

red

orange

apple

citrus

Figure 3: Bipartite graph with force-directed layout

References

[1] Ganter, B. and R. Wille Formal Concept Analysis – Mathematical Foundations. Springer. 1996.

[2] Gentry, J, L. Long, R. Gentleman, S. Falcon, F. Hahne, D. Sarkar, and K.D. Hansen Rgraphviz:

Provides plotting capabilities for R graph objects. R package version 2.12.0

[3] Ostoic, J.A.R. multiplex: Algebraic Tools for the Analysis of Multiple Social Networks. R package

v 2.2

[4] Ostoic, J.A.R. multigraph: Plot and manipulate multigraphs. R package v 0.40

9

